Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2016}}{\left(\dfrac{2015}{2}+1\right)+...+\left(\dfrac{2}{2015}+1\right)+\left(\dfrac{1}{2016}+1\right)+1}\)
\(=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2016}}{\dfrac{2017}{2}+\dfrac{2017}{3}+...+\dfrac{2017}{2015}+\dfrac{2017}{2016}}=\dfrac{1}{2017}\)
\(2C=2+1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{2016}}\)
\(2C-C=2+1+....+\frac{1}{2^{2016}}-\left(1+\frac{1}{2}+....+\frac{1}{2^{2017}}\right)\)
\(C\left(2-1\right)=2+1+....+\frac{1}{2^{2016}}-1-\frac{1}{2}-...-\frac{1}{2^{2017}}\)
\(C=2-\frac{1}{2^{2017}}=\frac{2^{2018}}{2^{2017}}-\frac{1}{2^{2017}}=\frac{2^{2018}-1}{2^{2017}}\)
ok men nha dug 100%
Co cung ko cai dc
\(C=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2016}}\)
\(2C=2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2015}}\)
\(2C-C=\left(2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2015}}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2016}}\right)\)
\(C=2-\frac{1}{2^{2016}}\)
Xét phần mẫu số: \(\frac{2016}{1}\) = 2016 = 1 + 1 + 1 +...+ 1 (2016 số hạng 1)
Ta có: (1+\(\frac{2015}{2}\)) + (1+\(\frac{2014}{3}\)) + (1+\(\frac{2013}{4}\)) + ... + (1+\(\frac{1}{2016}\))
= \(\frac{2017}{2}\) + \(\frac{2017}{3}\) + \(\frac{2017}{4}\) + ... + \(\frac{2017}{2016}\)
= 2016 x (\(\frac{1}{2}\)+\(\frac{1}{3}\)+\(\frac{1}{4}\)+...+\(\frac{1}{2016}\))
=> \(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}}{2016x\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}\right)}\)
Rút \(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}\) ở cả tử số và mẫu số, ta còn lại \(\frac{1}{2016}\)
Vậy \(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}}{\frac{2016}{1}+\frac{2015}{2}+\frac{2014}{3}+...+\frac{1}{2016}}\) = \(\frac{1}{2016}\)
Đặt biểu thức trên là A, đặt biểu thức có các số hạng là phân số là B ta có
\(2B=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2015}}\)
\(B=2B-B=1-\frac{1}{2^{2016}}\)
=> \(A=1+B=1+1-\frac{1}{2^{2016}}=2-\frac{1}{2^{2016}}\)