K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2016

a)

DK:tồn tại P \(\hept{\begin{cases}x\ne0\\x\ne-+6\\x\ne3\end{cases}}\)

\(P=\left(\frac{x}{\left(x-6\right)\left(x+6\right)}-\frac{x-6}{x\left(x+6\right)}\right).\frac{x\left(x+6\right)}{2\left(x-3\right)}\\ \)

\(P=\left(\frac{x^2-\left(x-6\right)\left(x-6\right)}{x\left(x-6\right)\left(x+6\right)}\right).\frac{x\left(x+6\right)}{2\left(x-3\right)}\)

\(P=\left(\frac{x^2-\left(x^2-12x+36\right)}{x\left(x-6\right)\left(x+6\right)}\right).\frac{x\left(x+6\right)}{2\left(x-3\right)}\)

\(P=\left(\frac{12\left(x-3\right)}{x\left(x-6\right)\left(x+6\right)}\right).\frac{x\left(x+6\right)}{2\left(x-3\right)}=\frac{6}{x-6}\)

b)6/(x-6)=1=> x-6=6=> x=12

c)x-6<0=> x<6

23 tháng 12 2018

dieu kien xac  dinh cua bieu thuc tren la x khac -+6,x khac 3

11 tháng 3 2020

ĐKXĐ:\(x\ne\pm2;x\ne-3;x\ne0\)

\(P=1+\frac{x-3}{x^2+5x+6}\left(\frac{8x^2}{4x^3-8x^2}-\frac{3x}{3x^2-12}-\frac{1}{x+2}\right)\)

\(=1+\frac{x-3}{\left(x+2\right)\left(x+3\right)}\left[\frac{8x^2}{4x^2\left(x-2\right)}-\frac{3x}{3\left(x^2-4\right)}-\frac{1}{x+2}\right]\)

\(=1+\frac{x-3}{\left(x+2\right)\left(x+3\right)}\left(\frac{2}{x-2}-\frac{x}{x^2-4}-\frac{1}{x+2}\right)\)

\(=1+\frac{x-3}{\left(x+2\right)\left(x+3\right)}\left[\frac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{x}{\left(x-2\right)\left(x+2\right)}-\frac{x-2}{\left(x-2\right)\left(x+2\right)}\right]\)

\(=1+\frac{x-3}{\left(x+2\right)\left(x+3\right)}\cdot\frac{2x+4-x-x+4}{\left(x-2\right)\left(x+2\right)}\)

\(=1+\frac{8\left(x-3\right)}{\left(x+2\right)^2\left(x+3\right)\left(x-2\right)}\)

Đề sai à ??

28 tháng 11 2016

làm nốt

d) (2x-1)(3x+2)(3-x)

=(6x2+x-2)(3-x)

=-6x3+17x2+5x-6

e) (x+3)(x2+3x-5)

=x3+6x2+4x-15

f) (xy-2)(x3-2x-6)

=x4y-2x3-2x2y-6xy+4x+12

g) (5x3-x2+2x-3)(4x2-x+2)

=20x5-9x4+19x3-16x2+7x-6

 

28 tháng 11 2016

Bài 1:

a) (x-2)(x2+3x+4)

=x(5x+4)-2(5x+4)

= 5x2+4x-10x-8

=5x2-6x-8

8 tháng 1 2018

Bài 2: a) \(3x^3-3x=0\Leftrightarrow3x\left(x^2-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm1\end{cases}}\)

b) \(x^2-x+\frac{1}{4}=0\Leftrightarrow x^2-2.\frac{1}{2}+\left(\frac{1}{2}\right)^2=0\Leftrightarrow\left(x-\frac{1}{2}\right)^2=0\)

\(\Leftrightarrow x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}\)

6 tháng 2 2020

Bài 1 :

a, \(\left(4x-1\right)\left(x-3\right)-\left(x-3\right)\left(5x+2\right)=0\)

=> \(\left(x-3\right)\left(4x-1-5x-2\right)=0\)

=> \(\left(x-3\right)\left(-x-3\right)=0\)

=> \(\left[{}\begin{matrix}x-3=0\\-x-3=0\end{matrix}\right.\) => \(\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)

Vậy phương trình có nghiệm là \(x=\pm3\) .

b, \(\left(x+3\right)\left(x-5\right)+\left(x+3\right)\left(3x-4\right)=0\)

=> \(\left(x+3\right)\left(x-5+3x-4\right)=0\)

=> \(\left(x+3\right)\left(4x-9\right)=0\)

=> \(\left[{}\begin{matrix}x+3=0\\4x-9=0\end{matrix}\right.\) => \(\left[{}\begin{matrix}x=-3\\x=\frac{9}{4}\end{matrix}\right.\)

Vậy phương trình có nghiệm là \(x=-3,x=\frac{9}{4}\) .

c, \(\left(x+6\right)\left(3x-1\right)+x^2-36=0\)

=> \(\left(x+6\right)\left(3x-1\right)+\left(x-6\right)\left(x+6\right)=0\)

=> \(\left(x+6\right)\left(3x-1+x-6\right)=0\)

=> \(\left(x+6\right)\left(4x-7\right)=0\)

=> \(\left[{}\begin{matrix}x+6=0\\4x-7=0\end{matrix}\right.\) => \(\left[{}\begin{matrix}x=-6\\x=\frac{7}{4}\end{matrix}\right.\)

Vậy phương trình có nghiệm là \(x=-6,x=\frac{7}{4}\) .

6 tháng 2 2020

a) ( 4x - 1 ) ( x - 3 ) - ( x - 3 ) ( 5x + 2 ) = 0

⇔ ( x - 3 ) ( 4x - 1 - 5x - 2 ) = 0

⇔ ( x - 3 ) ( -x - 3 ) = 0

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\-x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)

Ý b) tương tự ý a) thôi.

c) ( x + 6 ) ( 3x - 1 ) + x2 - 36 = 0

⇔ ( x + 6 ) ( 3x - 1 ) + ( x + 6 ) ( x - 6 ) = 0

⇔ (x+6)(3x-1+x-6)=0

⇔ (x+6)(4x-7)=0

\(\Leftrightarrow\left[{}\begin{matrix}x+6=0\\4x-7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-6\\x=\frac{7}{4}\end{matrix}\right.\)

15 tháng 11 2017

2)

a) \(3x^3-3x=0\)

\(\Leftrightarrow3x\left(x^2-1\right)=0\)

\(\Leftrightarrow3x\left(x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x=0\\x-1=0\\x+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)

Vậy x=0 ; x=-1 ; x=1

b) \(x^2-x+\dfrac{1}{4}=0\)

\(\Leftrightarrow x^2-2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2=0\)

\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2=0\)

\(\Leftrightarrow x-\dfrac{1}{2}=0\)

\(\Leftrightarrow x=\dfrac{1}{2}\)

Vậy \(x=\dfrac{1}{2}\)

15 tháng 11 2017

1)

a) \(\left(x-2\right)\left(x^2+3x+4\right)\)

\(\Leftrightarrow x^3+3x^2+4x-2x^2-6x-8\)

\(\Leftrightarrow x^3+x^2-2x-8\)

b) \(\left(x-2\right)\left(x-x^2+4\right)\)

\(=x^2-x^3+4x-2x+2x^2-8\)

\(=3x^2-x^3+2x-8\)

c) \(\left(x^2-1\right)\left(x^2+2x\right)\)

\(=x^4+2x^3-x^2-2x\)

d) \(\left(2x-1\right)\left(3x+2\right)\left(3-x\right)\)

\(=\left(6x^2+4x-3x-2\right)\left(3-x\right)\)

\(=18x^2+12x-9x-6-6x^3-4x^2+3x^2+2x\)

\(=17x^2+5x-6-6x^3\)

11 tháng 8 2016

Bài 1:

a. A = x^2 - 5x - 1

\(=x^2-5x+\frac{25}{4}-\frac{29}{4}\)

\(=x^2-5x+\left(\frac{5}{2}\right)^2-\frac{29}{4}\)

\(=\left(x-\frac{5}{2}\right)^2-\frac{29}{4}\ge0-\frac{29}{4}=-\frac{29}{4}\)

Dấu = khi x=5/2

Vậy MinC=-29/4 khi x=5/2

 

 

11 tháng 8 2016

2. Tìm x:
a. ( 2x - 3 )^2 - ( 4x + 1 )( 4x - 1 ) = ( 2x - 1 ).( 3 - 7x )

=>4x2-12x+9+1-16x2=-14x2+13x-3

=>-12x2-12x+10=-14x2+13x-3

=>2x2-25x+13=0

\(\Rightarrow2\left(x-\frac{25}{4}\right)^2-\frac{521}{8}=0\)

\(\Rightarrow\left(x-\frac{25}{4}\right)^2=\frac{521}{16}\)

\(\Rightarrow x-\frac{25}{4}=\pm\sqrt{\frac{521}{16}}\)

\(\Rightarrow x=\frac{25}{4}\pm\frac{\sqrt{521}}{4}\)

c. 4.( x - 3 ) - ( x + 2 ) = 0

=>4x-12-x-2=0

=>3x-14=0

=>3x=14

=>x=14/3