Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì hai số đối nhau có tổng bằng 0 nên A+B=0
hay a-b+c+(-a)+b-c=0
[a+(-a)]-[(-b)+b]+[c+(-c)]=0
0 + 0 + 0=0
Vì A+B=0 nên A và B là hai số đối nhau
Ta xét A + B :
a - b + c - a + b - c
= ( a - a ) + ( b - b ) + ( c - c )
= 0 + 0 + 0
=0
Chứng tỏ A và B là 2 số đối nhau
k mik nhe , bài này mik học rùi, đúng đấy
E=(-a-b+c+d)-(d+c-b-2a)
E=-a-b+c+d-d-c+b+2a
E=-a+(-)b+c+d+(-d)+(-c)+b+2a
E=-a+(-b)+c+d+(-d)+(-c)+b+2a
E=(2a-a)+(-b+b)+(-d+d)+(-c+c)=a+0+0+0=a
Nói rõ nha:
Ta xét: P + Q = -a+b-c+a-b+c=(-a +a ) + (-b+b)+ ( -c +c) = 0+ 0+ 0 =0
Vậy P và Q là 2 số đối nhau!
Mk chỉ nói qua thui nha bn thử cộng P và Q lại sẽ ra 0 nên suy ra P=Q
Bài 1 :
\(a,\left(a-b\right)+\left(c-d\right)-\left(a-c\right)=-\left(b+d\right)\)
Ta có : \(VT=\left(a-b\right)+\left(c-d\right)-\left(a-c\right)\)
\(=a-b+c-d-a+c\)
\(=-\left(b+d\right)=VP\)
\(\Rightarrow\left(a-b\right)+\left(c-d\right)-\left(a-c\right)=-\left(b+d\right)\)
\(b,\left(a-b\right)-\left(c-d\right)+\left(b+c\right)=a+d\)
Ta có : \(VT=\left(a-b\right)-\left(c-d\right)+\left(b+c\right)\)
\(=a-b-c+d+b+c\)
\(=a+d=VP\)
\(\Rightarrow\left(a-b\right)-\left(c-d\right)+\left(b+c\right)=a+d\)
b)
Ta có: \(ab-ac+bc-c^2=-1\Leftrightarrow a\left(b-c\right)+c\left(b-c\right)=-1\)
\(\Leftrightarrow\left(a+c\right)\left(b-c\right)=-1\) (1)
Vì a, b, c nguyên
=> a+c nguyên và b-c nguyên
Từ đó suy ra có hai trường hợp xảy ra
TH1: a+c=1 và b-c=-1 => a+b =0 => a, b đối nhau
TH2: a+c=-1 và b-c=1 => a+b =0 => a, b đối nhau
Vậy a, b đối nhau
A+B=0
Vì tổng bằng 0 nên chúng là 2 số đối nhau
T..i..c..k mk nha