K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 1 2016

THeo hệ thức Viete : \(\int^{x1+x2=2\left(m-1\right)\left(1\right)}_{x1x2=m^2-3m+4\left(2\right)}\)

Biến đổi sao đây == đợi tí nghĩ chút 

 

 

29 tháng 1 2016

dễ lắm bạn à 

29 tháng 1 2016

moi hoc lop 6 thoi

15 tháng 6 2015

1) \(\Delta=m^2-4\left(m-1\right)=m^2-4m+4=\left(m-2\right)^2\ge0\)với mọi m=> pt luôn có nghiệm với mọi m

a) áp dụng hệ thức vi ét ta có: \(x1+x2=-m\)\(x1.x2=m-1\)

 \(B=x1^2+x2^2-4\left(x1+x2\right)=\left(x1+x2\right)^2-2x1x2-4\left(x1+x2\right)=m^2-2\left(m-1\right)-4\left(-m\right)=m^2+2m-2\)

\(=\left(m^2+2m+1\right)-3=\left(m+1\right)^2-3\ge-3\Rightarrow MinB=-3\Leftrightarrow m=-1\)

2) \(2x^2+2x+3x+3=0\Leftrightarrow\left(x+1\right)\left(2x+3\right)=0\Rightarrow\)x1=-1 và x2=-3/2

tổng 2 nghiệm \(x1^2+1+x2^2+1=1^2+1+\left(-\frac{3}{2}\right)^2+1=\frac{21}{4}\)

tích 2 nghiệm \(=\left(1^2+1\right)\left(\frac{3}{2}^2+1\right)=\frac{13}{2}\)=> PT cần tìm: \(x^2-\frac{21}{4}x+\frac{13}{2}=0\)

 

15 tháng 6 2015

1, thay m=-2 vào giải chắc bạn làm đc nếu k liên hệ mình giải cho

b, giải sử pt có 2 nghiệm pb, áp dụng hệ thức vi ét ta có: \(x1+x2=2m+2\)\(x1.x2=m-2\Leftrightarrow2.x1.x2=2m-4\)

=> \(x1+x2-2.x1.x2=2m+2-2m+4=6\)=> hệ thức liên hệ k phụ thuộc vào m

2) \(\Delta=4\left(m-3\right)^2+4>0\) với mọi m=> pt luôn có 2 nghiệm pb

áp dụng hệ thức vi ét ta có: \(x1+x2=2m-6\)\(x1.x2=-1\)

câu này bạn xem có sai đề k. loại bài toán áp dụng hệ thức vi ét này k bao giờ có đề là x1-x2 đâu nha

sửa đề rồi liên hệ để mình làm tiếp nha

 

NV
26 tháng 2 2020

a/ \(m\ne0\) ; \(\Delta'=\left(m+1\right)^2-m\left(m-4\right)\ge0\)

\(\Leftrightarrow6m+1\ge0\Rightarrow m\ge-\frac{1}{6}\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=\frac{2\left(m+1\right)}{m}\\x_1x_2=\frac{m-4}{m}\end{matrix}\right.\)

Kết hợp với điều kiện đề bài: \(\left\{{}\begin{matrix}x_1+x_2=\frac{2m+2}{m}\\x_1+4x_2=2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}3x_2=2-\frac{2m+2}{m}\\x_1=2-4x_2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_2=\frac{-2}{3m}\\x_1=\frac{6m+8}{3m}\end{matrix}\right.\)

\(x_1x_2=\frac{m-4}{m}\Rightarrow\frac{-2\left(6m+8\right)}{9m^2}=\frac{m-4}{m}\)

\(\Leftrightarrow-12m-16=9m^2-36m\)

\(\Leftrightarrow9m^2-24m+16=0\Rightarrow m=\frac{4}{3}\)

b/ Từ hệ thức Viet: \(\left\{{}\begin{matrix}2x_1+2x_2=\frac{4m+4}{m}\\x_1x_2=\frac{m-4}{m}\end{matrix}\right.\)

\(\Rightarrow2x_1+2x_2+x_1x_2=5\)

Đây là hệ thức liên hệ 2 nghiệm ko phụ thuộc m

NV
26 tháng 2 2020

Bài 2:

Đặt \(x-\frac{1}{2}=t\)

\(\Rightarrow t^2-2t-\frac{21}{4}=0\Rightarrow\left[{}\begin{matrix}t=\frac{7}{2}\\t=-\frac{3}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x-\frac{1}{2}=\frac{7}{2}\\x-\frac{1}{2}=-\frac{3}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=4\\x=-1\end{matrix}\right.\)

25 tháng 1 2016

dùng vi ét đc k bạn 

25 tháng 1 2016

Tuấn đc

24 tháng 5 2016

Cho phương trình: X2 - (2m4+1)x + m2 + m - 1 = 0

a. Giải phương trình khi m=1 khi đó lập một phương trình nhận t1 = x+ xvà t= xxlàm nghiệm.

b. Chứng minh phương trình có nghiệm với mọi m.

c. Tìm m sao cho:

    A=(2x1 - x2)(2x2 - x1) đạt GTNN, thín GTNN đó (giá trị nhỏ nhất). 

chịu @_@

24 tháng 5 2016

a) thay m=1 vào lập denta giải pt ra đc x1=(3+căn5)/2;x2=(3-căn5)/2

t1=x1+x2=(3+căn5)/2+(3-căn5)/2=3

t2=x1*x2=(3+căn5)/2*(3-căn5)/2=1

=>t1+t2=4;t1*t2=3

=>t1;t2 là nghiệm của pt

T^2-4T+3=0

b) đenta=(2m+1)^2-4(m^2+m-1)=5>0

=>pt luôn luôn có nghiệm với mọi m

c) A=(2x1-x2)(2x2-x1)=5x1x2-2x1^2-2x2^2=5x1x2-2(x1^2+x2^2)=5x1x2-2(x1+x2)^2+4x1x2=9x1x2-2(x1+x2)^2

=9(m^2+m-1)-2(2m+1)^2=9m^2+9m-9-4m-2=9m^2+5m-11>=-421/36 khi x=-5/18

AH
Akai Haruma
Giáo viên
27 tháng 2 2017

Lời giải:

a) Để PT có hai nghiệm pb thì \(\Delta=(2m-3)^2-4(m^2-3m)>0\)

\(\Leftrightarrow 9>0\) (luôn đúng với mọi \(m\in\mathbb{R}\) )

Ta có PT tương đương \((x-m)(x-m+3)=0\)

\(\Rightarrow\left\{\begin{matrix}x_1=m-3\\x_2=m\end{matrix}\right.\). Để hai nghiệm thuộc khoảng \((1,6)\) thì :

\(1< m,m-3<6\Rightarrow 4< m<6\)

b) Từ phần a) suy ra hệ thức độc lập là \(x_1-x_2=-3\)

c) \(A=x_2^3-x_1^3=m^3-(m-3)^3=9m^2-27m+27=9(m-\frac{3}{2})^2+\frac{27}{4}\geq \frac{27}{4}\)

Do đó \(A_{\min}=\frac{27}{4}\Leftrightarrow m=\frac{3}{2}\)

8 tháng 5 2020

cho mik hỏi câu b chút, mik chưa hiểu tại sao1<m,m-3<6 lại suy ra đc 4<m<6 vậy ?