K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 1 2016

Ta có:

2x-y+3x+y=3+12

5x=15

x=15:5

x=3

Ta có: 2.3-y=3

          6-y=3

          y=6-3

y=3

5 tháng 4 2020

\(\left\{{}\begin{matrix}2\sqrt{x-3}+\frac{12}{y-2x}=8\\3\sqrt{4x-12}+\frac{3}{2x-y}=\frac{9}{2}\end{matrix}\right.\) \(Đkxđ:\left\{{}\begin{matrix}x\ge3\\y\ne2x\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2\sqrt{x-3}+\frac{12}{y-2x}=8\\6\sqrt{x-3}+\frac{3}{2x-y}=\frac{9}{2}\end{matrix}\right.\)

Đặt: \(\left\{{}\begin{matrix}2\sqrt{x-3}=a\left(a>0\right)\\\frac{3}{2x-y}=b\end{matrix}\right.\)

Ta được phương trình mới:

\(\left\{{}\begin{matrix}a-4b=8\\3a+b=\frac{9}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=\frac{3}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2\sqrt{x-3}=2\\\frac{3}{2x-y}=-\frac{3}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-3=1\\2x-y=-2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=10\end{matrix}\right.\)

Vậy ..........

30 tháng 6 2017

\(\left\{{}\begin{matrix}2x-y=1-2y\\3x+y=3-x\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x+y=1\\4x+y=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)

( Cái này bấm máy tính là ra mà :v )

1 tháng 7 2017

Ahhh mình đọc đầu bài không kĩ nên gọi ẩn sai tùm lum bạn ạ , mình làm ra rồi , dù sao cũng cảm ơn bạn nhé =))

NV
4 tháng 6 2019

\(\left\{{}\begin{matrix}5x^2+5y^2-6xy=2\\2x^2+3x-2y^2-y=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}5x^2+5y^2-6xy=2\\4x^2+6x-4y^2-2y=6\end{matrix}\right.\)

\(\Rightarrow9x^2+y^2-6xy+6x-2y+1=9\)

\(\Leftrightarrow\left(3x-y+1\right)^2=9\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-y+1=3\\3x-y+1=-3\end{matrix}\right.\)

Đến đây chia 2 trường hợp và thế vào 1 trong 2 pt để giải

8 tháng 3 2020

1) Cho hệ phương trình:

{mx+y=52x−y=−2(I){mx+y=52x−y=−2(I)

a) Với m=1 ta có hệ phương trình:

{x+y=52x−y=−2{x+y=52x−y=−2

Cộng vế với vế ta được:

3x=3⇔x=1⇒y=2x+2=43x=3⇔x=1⇒y=2x+2=4

Vậy với  m=11m=11 thì hệ phương trình (I) có nghiệm x=1 và y=4

b) Nghiệm (x0,y0)(x0,y0) của  (I) thỏa mãn x0+y0=1x0+y0=1

nên ta có hệ phương trình:

⎧⎪⎨⎪⎩x+y=1(1)mx+y=5(2)2x−y=−2(3){x+y=1(1)mx+y=5(2)2x−y=−2(3)

Lấy (1) + (3) ta được: 3x=−1⇒x=−13⇒y=1−x=433x=−1⇒x=−13⇒y=1−x=43

Thay vào (2) suy ra m=5−yx=−11m=5−yx=−11

Vậy với m=−11m=−11 thì nghiệm của hệ phương trình (I) có tổng là 1.

2) Từ x+my=2⇒x=2−myx+my=2⇒x=2−my

Thay vào phương trình mx−2y=1mx−2y=1 ta được:

m(2−my)−2y=1⇒y=2m−1m2+2m(2−my)−2y=1⇒y=2m−1m2+2

⇒x=2−m2m−1m2+2⇒x=2−m2m−1m2+2

x=m+4m2+2x=m+4m2+2

Do m2+2>0m2+2>0 ∀m∀m

⇒x>0⇒m+4>0⇒m>−4⇒x>0⇒m+4>0⇒m>−4 và y<0⇒2m−1<0⇒m<12y<0⇒2m−1<0⇒m<12

Vậy với −4<m<12−4<m<12 thì phương trình có nghiệm duy nhất mà x>0,y<0

1 tháng 1 2020

a, #Góp ý từ nhiều người nhưng họ không giải nên t làm giùm

ĐK: \(x\le3\)

\(\left\{{}\begin{matrix}x^2+y^2+1=2\left(xy-x+y\right)\left(1\right)\\x^3+3y^2+5x-12=\left(12-y\right)\sqrt{3-x}\left(2\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow x^2+y^2+1-2xy+2x-2y=0\)

\(\Leftrightarrow\left(x-y+1\right)^2=0\) \(\Leftrightarrow x-y+1=0\Leftrightarrow y=x+1\) Thay vào (2)

\(\left(2\right)\)\(\Leftrightarrow x^3+3\left(x+1\right)^2+5x-12=\left[12-\left(x+1\right)\right]\sqrt{3-x}\)

\(\Leftrightarrow x^3+3x^2+11x-9=\left(11-x\right)\sqrt{3-x}\)

\(\Leftrightarrow x^3+3x^2+8x=\left(11-x\right)\sqrt{3-x}+3\left(3-x\right)\)

\(\Leftrightarrow x^3+3x^2+8x=\left(3-x\right)\sqrt{3-x}+8\sqrt{3-x}+3\left(3-x\right)\)

\(\Leftrightarrow x^3+3x^2+8x=\sqrt{\left(3-x\right)^3}+3\sqrt{\left(3-x\right)^2}+8\sqrt{3-x}\)

\(\Leftrightarrow x=\sqrt{3-x}\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x^2+x-3=0\end{matrix}\right.\) \(\Rightarrow x=\frac{-1+\sqrt{13}}{2}\left(tm\right)\Rightarrow y=\frac{1+\sqrt{13}}{2}\)

Vậy...

1 tháng 1 2020

Akai Haruma, No choice teen, Arakawa Whiter, Phạm Hoàng Lê Nguyên, Vũ Minh Tuấn, tth, HISINOMA KINIMADO, Nguyễn Việt Lâm

Mn giúp e vs ạ! thanks!

AH
Akai Haruma
Giáo viên
31 tháng 1 2017

Lời giải:

\(\text{HPT}\Leftrightarrow \left\{\begin{matrix} 7(2x^3+3x^2y)=35\\ 5(y^3+6xy^2)=35\end{matrix}\right.\Rightarrow 14x^3+21x^2y-5y^3-30xy^2=0(1)\)

Nhận thấy $x,y\neq 0$ nên đặt \(x=ty(t\neq 0)\). Thay vào $(1)$ ta được:

\(14t^3y^3+21t^2y^3-5y^3-30ty^3=0\)

\(\Leftrightarrow 14t^3+21t^2-30t-5=0\Leftrightarrow (t-1)(14t^2+35t+5)=0\)

Nếu \(t=1\Rightarrow x=y\rightarrow 7y^3=7\Rightarrow y=1\rightarrow x=1\)

Nếu \(14t^2+35t+5=0\Rightarrow \left[ \begin{array}{ll}t=\frac{-35+3\sqrt{105}}{28} \\ \\ t=\frac{-35-3\sqrt{105}}{28}\end{array} \right.\)

Ta có \(y^3+6xy^2=y^3+6ty^3=7\Rightarrow y^3=\frac{7}{6t+1}\)

Thay vào ta tìm được \(\left[ \begin{array}{ll}y=\frac{7+\sqrt{105}}{4} \rightarrow x=\frac{5-\sqrt{105}}{8} \\ \\ y=\frac{7-\sqrt{105}}{4}\rightarrow x=\frac{5+\sqrt{105}}{8}\end{array} \right.\)

Ta có cặp nghiệm \((x,y)=(1,1),\left ( \frac{5+\sqrt{105}}{8},\frac{7-\sqrt{105}}{4} \right ),\left ( \frac{5-\sqrt{105}}{8},\frac{7+\sqrt{105}}{4} \right )\)