Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{x-\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}-\frac{3}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}+\frac{2\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\)
\(=\frac{x-\sqrt{x}+1-3+2\sqrt{x}+2}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}=\frac{x+\sqrt{x}}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}=\frac{\sqrt{x}}{x-\sqrt{x}+1}\)
\(\left\{{}\begin{matrix}\sqrt{x}\ge0\\x-\sqrt{x}+1=\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{3}{4}>0\end{matrix}\right.\) \(\Rightarrow A\ge0\)
\(\Rightarrow A_{min}=0\) khi \(x=0\)
Với \(x\ne0\Rightarrow A=\frac{1}{\sqrt{x}+\frac{1}{\sqrt{x}}-1}\le\frac{1}{2\sqrt{\sqrt{x}.\frac{1}{\sqrt{x}}}-1}=\frac{1}{2-1}=1\)
\(\Rightarrow A_{max}=1\) khi \(\sqrt{x}=\frac{1}{\sqrt{x}}\Leftrightarrow x=1\)
Bài 2 :
Tìm min : Bình phương
Tìm max : Dùng B.C.S ( bunhiacopxki )
Bài 3 : Dùng B.C.S
KP9
nói thế thì đừng làm cho nhanh bạn ạ
Người ta cũng có chút tôn trọng lẫn nhau nhé đừng có vì dăm ba cái tích
\(a.A=\sqrt{x}-3+\frac{10-x}{\sqrt{x}+3}=\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{\sqrt{x}+3}+\frac{10-x}{\sqrt{x}+3}=\frac{x-9+10-x}{\sqrt{x}+3}=\frac{1}{\sqrt{x}+3}=\frac{\sqrt{x}-3}{x-9}\)
\(b.\)Ta có: \(\sqrt{x}\ge0\forall x\Rightarrow\sqrt{x}+3\ge3\forall x\Rightarrow\frac{1}{\sqrt{x}+3}\ge\frac{1}{3}\forall x\)
Vậy \(A_{Min}=\frac{1}{3}\Leftrightarrow x=0\)
1.(√x -2)^2 ≥ 0 --> x -4√x +4 ≥ 0 --> x+16 ≥ 12 +4√x --> (x+16)/(3+√x) ≥4
--> Pmin=4 khi x=4
2. Đặt \(\sqrt{x^2-4x+5}=t\ge1\)1
=> M=2x2-8x+\(\sqrt{x^2-4x+5}\)+6=2(t2-5)+t+6
<=> M=2t2+t-4\(\ge\)2.12+1-4=-1
Mmin=-1 khi t=1 hay x=2