K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2017

a) \(x.\left(x+4\right)\left(x-4\right)-\left(x^2+1\right)\left(x^2-1\right)=x.\left(x^2-16\right)-\left(x^4-1\right)=x^3-16x-x^4+1\)

ý này ko rút gọn được hết đâu.

b) \(\left(y-3\right)\left(y+3\right)\left(y^2+9\right)-\left(y^2+2\right)\left(y^2-2\right)=\left(y^2-9\right)\left(y^2+9\right)-\left(y^4-4\right)\)

\(=y^4-81-y^4+4=-77\)

c)  \(\left(a+b-c\right)^2-\left(a-c\right)^2-2ab+2bc=a^2+b^2+c^2+2ab-2bc-2ac-a^2+2ac-c^2-2ab+2bc=b^2\)

16 tháng 7 2017

Trần Anh: Cảm ơn pạn nhiều nhé ~~!! ;) ;) ;) 

17 tháng 10 2018

\(3\left(x-y\right)^2-2\left(x+y\right)^2-\left(x+y\right)\left(x-y\right)\)

\(=3.\left(x^2-2xy+y^2\right)-2\left(x^2+2xy+y^2\right)-x^2+y^2\)

\(=3x^2-6xy+3y^2-2x^2-4xy-2y^2-x^2+y^2\)

\(=2y^2-10xy\)

a: \(\left(x+y\right)\left(x^2-xy+y^2\right)\)

\(=x^3-x^2y+xy^2+x^2y-xy^2+y^3\)

\(=x^3+y^3\)

b: \(\left(x+y\right)^3=\left(x+y\right)\left(x+y\right)^2\)

\(=\left(x+y\right)\left(x^2+2xy+y^2\right)\)

\(=x^3+2x^2y+xy^2+2x^2y+2xy^2+y^3\)

\(=x^3+3x^2y+3xy^2+y^3\)

3 tháng 9 2021

a. Ta có \(\left(x+y\right)\left(x^2-xy+y^2\right)=x^3-x^2y+xy^2+x^2y-xy^2+y^3=x^3+y^3\)

\(\Rightarrow\left(x+y\right)\left(x^2-xy+y^2\right)=x^3+y^3\)

b. Ta có \(x^3+3x^2y+3xy^2+y^3=x^3+y^3+3xy\left(x+y\right)=\left(x+y\right)\left(x^2-xy+y^2\right)+3xy\left(x+y\right)=\left(x+y\right)\left(x^2+2xy+y^2\right)=\left(x+y\right)\left(x+y\right)^2=\left(x+y\right)^3\)\(\Rightarrow\left(x+y\right)^3=x^3+3x^2y+3xy^2+y^3\)

x^3-3x^2+5x+2007=0

nên \(x\simeq-11,57\)

y^3-3y^2+5y-2013=0

nên \(y\simeq13,57\)

=>x+y=2

18 tháng 12 2021

a: =(x-3)(x-1)(x+1)

14 tháng 9 2015

a/ \(\frac{3x^2-11x+8}{2x^2-9x+7}=\frac{\left(x-1\right)\left(3x-8\right)}{\left(x-1\right)\left(2x-7\right)}=\frac{3x-8}{2x-7}\)

câu b,c tương tự nha ^^

20 tháng 11 2021

\(A=3x^3-6x^2+9x-3x^3+2x^2+5x^2-5x=x^2+4x\\ B=\left(x^2+xy+y^2\right)\left(x-y\right)=x^3-y^3\)

2 tháng 10 2018

Bài 1:

a.\(\left(x+y\right)^2-\left(x-y\right)^2=\left(x+y-x+y\right)\left(x+y+x-y\right)=2\left(x+y\right)\)

b.\(2\left(x+y\right)\left(x-y\right)+\left(x+y\right)^2+\left(x-y\right)^2=\left(x+y+x-y\right)^2=4x^2\)