K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAEB và ΔADC có

AE=AD
\(\widehat{BAE}\) chung

AB=AC

Do đó; ΔAEB=ΔADC

=>EB=DC

b: Ta có: ΔAEB=ΔADC

=>\(\widehat{ABE}=\widehat{ACD}\)

Ta có: AD+DB=AB

AE+EC=AC

mà AD=AE và AB=AC

nên DB=EC

Xét ΔDBC và ΔECB có

DB=EC

BC chung

DC=EB

Do đó: ΔDBC=ΔECB

=>\(\widehat{BDC}=\widehat{CEB}\)

Xét ΔKDB và ΔKEC có

\(\widehat{KDB}=\widehat{KEC}\)

DB=EC

\(\widehat{KBD}=\widehat{KCE}\)

Do đó: ΔKDB=ΔKEC

c: Ta có: ΔKDB=ΔKEC

=>KB=KC

Xét ΔABK và ΔACK có

AB=AC

BK=CK

AK chung

Do đó: ΔABK=ΔACK

=>\(\widehat{BAK}=\widehat{CAK}\)

=>AK là phân giác của góc BAC

d: Ta có: ΔABC cân tại A

mà AK là đường phân giác

nên AK là đường cao

=>AK\(\perp\)BC

e: Xét ΔABC có \(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)

nên DE//BC

12 tháng 2 2018

A B C E D K

12 tháng 2 2018

a, ta có:

+/ \(\Delta\)ABC cân tại A=> \(\widehat{ABC}=\widehat{ACB}\)và AB=AC

+/AB=AC(gt)

AD+BD=AE+CE

Mà AD=AE(gt)

SUY RA:BD=CE

Xét \(\Delta BCD\)và \(\Delta CEB\)

BC chung

\(\widehat{ABC}=\widehat{ACB}\)(cmt)

BD=CE(cmt)

Suy ra:  \(\Delta BCD\)\(\Delta CEB\)

=>BE=CD(đpcm)

7 tháng 6 2019

Bài 2: 

Xét ΔADO vuông tại D và ΔAEO vuông tại E có

AO chung

\(\widehat{DAO}=\widehat{EAO}\)

Do đó: ΔADO=ΔAEO

Suy ra: OD=OE

Bài 3: 

Xét ΔABE và ΔACD có 

AB=AC
\(\widehat{A}\) chung

AE=AD
Do đó: ΔABE=ΔACD

Suy ra: BE=CD

Bài 1: 

Xét ΔADO vuông tại D và ΔAEO vuông tại E có

AO chung

\(\widehat{DAO}=\widehat{EAO}\)

Do đó: ΔADO=ΔAEO

Suy ra: OD=OE

Bài 2: 

a: Xét ΔABE và ΔACD có

AB=AC
\(\widehat{BAE}\) chung

AE=AD

Do đó: ΔABE=ΔACD

Suy ra: BE=CD

b: Xét ΔBDC và ΔCEB có

BD=EC

\(\widehat{DBC}=\widehat{ECB}\)

BC chung

DO đó: ΔBDC=ΔCEB

Suy ra: \(\widehat{ODB}=\widehat{OEC}\)

Xét ΔODB và ΔOEC có 

\(\widehat{ODB}=\widehat{OEC}\)

BD=CE

\(\widehat{DBO}=\widehat{ECO}\)

Do đó: ΔODB=ΔOEC

10 tháng 7 2019

A B C D E O H

Cm: a) Xét t/giác ABE và t/giác ACD

có: AB = AC (gt)

  \(\widehat{A}\) :chung

  AE = AD (gt)

=> t/giác ABE = t/giác ACD (c.g.c)

=> BE = CD (2 cạnh t/ứng)

b)Ta có: AD + DB = AB

  AE + EC = AC

mà AD = AE (gt) ; AB = AC (gt)

=> BD = EC

Ta lại có: \(\widehat{ADC}+\widehat{CDB}=180^0\) (kề bù)

          \(\widehat{AEB}+\widehat{BEC}=180^0\)(kề bù)

mà \(\widehat{ADC}=\widehat{AEB}\)(vì t/giác ABE = t/giác ACD)

=> \(\widehat{BDC}=\widehat{BEC}\)

Xét t/giác BOD và t/giác COE

có: \(\widehat{DBO}=\widehat{OCE}\) (vì t/giác ABE = t/giác ACD)

  BD = EC (cmt)

  \(\widehat{BDO}=\widehat{OEC}\) (cmt)

=> t/giác BOD = t/giác COE (g.c.g)

c) Xét t/giác ABO và t/giác ACO

có: AB = AC (gT)

  OB = OC (vì t/giác BOD = t/giác COE)

 AO  : chung

=> t/giác ABO = t/giác ACO (c.c.c)

=> \(\widehat{BAO}=\widehat{CAO}\) (2 góc t/ứng)

=> AO là tia p/giác của \(\widehat{A}\)

d) Xét t/giác ABH và t/giác ACH

có: AB = AC (gt)

 \(\widehat{BAH}=\widehat{CAH}\)(cmt)

 AH : chung

=> t/giác ABH = t/giác ACH (c.g.c)

=> \(\widehat{BHA}=\widehat{CHA}\) (2 góc t/ứng)

Mà \(\widehat{BHA}+\widehat{CHA}=180^0\) (kề bù)

=> \(\widehat{BHA}=\widehat{CHA}=90^0\) => AH \(\perp\)BC (Đpcm)

30 tháng 11 2016

Ta có hình vẽ:

A B C D E M K a/ Xét tam giác DBC và tam giác EBC có:

BC: cạnh chung

\(\widehat{B}\)=\(\widehat{C}\)(vì tam giác ABC cân có AB = AC)

BD = CE (GT)

=> tam giác DBC = tam giác EBC (c.g.c)

=> BE = CD (2 cạnh tương ứng)

b/ Ta có: \(\widehat{BDC}\)=\(\widehat{CEB}\) (vì tam giác DBC = tam giác EBC) (1)

Ta có: tam giác ABC cân => \(\widehat{B}\)=\(\widehat{C}\)

\(\widehat{EBC}\)=\(\widehat{DCB}\) (vì tam giác DBC = tam giác EBC)

nên \(\widehat{DBK}\)=\(\widehat{ECK}\) (2)

Ta có: BD = CE (GT) (3)

Từ (1),(2),(3) => tam giác KBD = tam giác KCE (g.c.g)

c/ Xét tam giác ABK và tam giác ACK có:

AB = AC (GT)

AK: cạnh chung

Ta có: KD = KE (vì tam giác KBD = tam giác KCE)

Mà BE = CD (câu a)

nên BK = CK

Vậy tam giác ABK = tam giác ACK (c.c.c)

=> \(\widehat{BAK}\)=\(\widehat{CAK}\) (2 góc tương ứng)

=> AK là phân giác \(\widehat{DAE}\) (đpcm)

d/ Xét tam giác ABM và tam giác ACM có:

AB = AC (GT)

AM: cạnh chung

BM = MC (GT)

Vậy tam giác ABM = tam giác ACM (c.c.c)

=> AM cũng là phân giác góc \(\widehat{DAE}\)

Ta có: AK và AM đều là phân giác của \(\widehat{DAE}\)

=> AM trùng AK

hay A,K,M thẳng hàng.

3 tháng 12 2016

 

 

 

 

hiu :