1,với 19 số tự nhiên liên tiếp bất kì,có hay không 1 số có tổng các chữ số chia hết cho 102,chứng minh (n+1)(n+2)...2n chia hết cho 2n. tìm thương của phép chia3,cho a,b thuộc N sao cho a2+b2 chia hết cho ab. Tính A= \(\frac{a^2+b^2}{ab}\)4,có hay không số tự nhiên n để 5n+1 chia hết cho 719955,Chứng minh răng tồn tại các số nguyên dương x,y,z thỏa mãn đẳng thức:xx+yy=zp,với p là 1 số nguyên tố lẻ6,cho N là...
Đọc tiếp
1,với 19 số tự nhiên liên tiếp bất kì,có hay không 1 số có tổng các chữ số chia hết cho 10
2,chứng minh (n+1)(n+2)...2n chia hết cho 2n. tìm thương của phép chia
3,cho a,b thuộc N sao cho a2+b2 chia hết cho ab. Tính A= \(\frac{a^2+b^2}{ab}\)
4,có hay không số tự nhiên n để 5n+1 chia hết cho 71995
5,Chứng minh răng tồn tại các số nguyên dương x,y,z thỏa mãn đẳng thức:xx+yy=zp,với p là 1 số nguyên tố lẻ
6,cho N là số chẵn không chia hết cho 10.hãy tìm:
a,2 chữ số tận cùng của N20
b,3 chữ số tận cùng của N200
7,số dư của phép chia \(14^{14^{14^{14}}}:100000\)
8.có hay không số tự nhiên k sao cho 2003k có chữ số tận cùng là 0001
Bài 1: 5a+7b chia hết cho 13
=> 35a+49b chia hết cho 13
=> 5(7a+2b)+39b chia hết cho 13
Do 39b chia hết cho 13
=> 5(7a+2b) chia hết cho 13
Mà 5 vs 13 là 2 số nguyên tố cùng nhau
=> 7a+2b chia hết cho 13. (đpcm)
Bài 2:
Xét n=3 thì 1!+2!+3!=9-là SCP (chọn)
Xét n=4 thì 1!+2!+3!+4!=33 ko là SCP (loại)
Nếu n>=5 thì n! sẽ có tận cùng là 0
=> 1!+2!+3!+4!+....+n! vs n>=5 thì sẽ có tận cùng là 3 do 1!+2!+3!+4! tận cùng =3
Mà 1 số chính phương ko thể chia 5 dư 3 (1 SỐ CHÍNH PHƯƠNG CHIA 5 DƯ 0;1;4- tính chất)
=> Với mọi n>=5 đều loại
vậy n=3.
Bài 3:
Do 26^3 có 2 chữ số tận cùng là 76
26^5 có 2 chữ số tận cùng là 76
26^7 có 2 chữ sốtận cùng là 76
Vậy ta suy ra là 26 mũ lẻ sẽ tận cùng =76
Vậy 26^2019 có 2 chữ số tận cùng là 76.