K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 4 2017

Giải bài 6 trang 111 SGK Toán 9 Tập 2 | Giải toán lớp 9

9 tháng 12 2015

lớp 9 ít khi có lắm bạn ơi

8 tháng 1 2022

b. 10,85 CM

\(AH=\sqrt{25\cdot64}=40\left(cm\right)\)

Xét ΔAHB vuông tại H có

\(\tan B=\dfrac{AH}{HB}=\dfrac{40}{25}=1.6\)

nên \(\widehat{B}\simeq58^0\)

hay \(\widehat{C}=32^0\)

NV
20 tháng 1 2022

(O) và (O') có 2 vị trí tương đối như hình vẽ, tâm O' có thể nằm ở O' hoặc \(O'_1\)

Gọi H là giao điểm AB và OO', theo tính chất 2 đường tròn cắt nhau ta có H là trung điểm AB và \(OO'\perp AB\)

\(\Rightarrow AH=BH=\dfrac{AB}{2}=4\left(cm\right)\)

Áp dụng Pitago cho tam giác vuông OAH:

\(OH=\sqrt{OA^2-AH^2}=\sqrt{6^2-4^2}=2\sqrt{5}\)

Pitago cho tam giác vuông O'AH:

\(O'H=\sqrt{O'A^2-AH^2}=\sqrt{5^2-4^2}=3\)

\(\Rightarrow\left[{}\begin{matrix}OO'=OH+O'H=2\sqrt{5}+3=7,47\\OO'=OH-O'H=2\sqrt{3}-3=1,47< 2\left(loại\right)\end{matrix}\right.\)

NV
20 tháng 1 2022

undefined

1: ΔABC vuông tại A

=>\(\widehat{B}+\widehat{C}=90^0\)

=>\(\widehat{C}+47^0=90^0\)

=>\(\widehat{C}=43^0\)

Xét ΔABC vuông tại A có

\(sinC=\dfrac{AB}{BC}\)

=>\(BC=\dfrac{10}{sin43}\simeq14,66\left(cm\right)\)

ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AC=\sqrt{BC^2-AB^2}\simeq10,72\left(cm\right)\)

b: Xét ΔABC vuông tại A có AH là đường cao

nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\)

=>\(\dfrac{AB^2}{AC^2}=\dfrac{BH\cdot BC}{CH\cdot CB}=\dfrac{BH}{CH}\)

Xét ΔHAB vuông tại H có HD là đường cao

nên \(BD\cdot BA=BH^2\)

=>\(BD=\dfrac{BH^2}{AB}\)

Xét ΔHAC vuông tại H có HE là đường cao

nên \(CE\cdot CA=CH^2\)

=>\(CE=\dfrac{CH^2}{AC}\)

\(\dfrac{BD}{EC}=\dfrac{BH^2}{AB}:\dfrac{CH^2}{AC}\)

\(=\left(\dfrac{BH}{CH}\right)^2\cdot\dfrac{AC}{AB}=\left(\dfrac{AB^2}{AC^2}\right)^2\cdot\dfrac{AC}{AB}\)

\(=\dfrac{AB^3}{AC^3}\)