Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải phương trình \(\left(\sqrt{2-x}+1\right)^2\)= 3x +1
Mọi người giúp minh với ạ, mình đang cần gấp
ĐK: \(3x^2-2x-3\ge0\)(1)
Đặt : \(\sqrt{3x^2-2x-3}=t\left(t\ge0\right)\)
Ta có : \(3x^2-2x-3=t^2\Leftrightarrow3x^2=t^2+2x+3\)
Thế vào ta có phương trình :
\(t^2+2x+3+3x+2=\left(x+6\right).t\)
<=> \(t^2-\left(x+6\right)t+5x+5=0\)
<=> \(\left(t^2-\left(x+1\right)t\right)-\left(5t-5\left(x+1\right)\right)=0\)
<=> \(t\left(t-x-1\right)-5\left(t-x-1\right)=0\)
<=> \(\left(t-x-1\right)\left(t-5\right)=0\)
<=> \(\orbr{\begin{cases}t-x-1=0\\t-5=0\end{cases}}\)
Với \(t-x-1=0\Leftrightarrow t=x+1\)
Ta có phương trình: \(\sqrt{3x^2-2x-3}=x+1\)
<=> \(\hept{\begin{cases}x+1\ge0\\3x^2-2x-3=x^2+2x+1\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ge-1\\x^2-2x-2=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=1+\sqrt{3}\\x=1-\sqrt{3}\end{cases}}\)( thỏa mãn đk (1))
Với \(t-5=0\Leftrightarrow t=5\)
Ta có phương trình : \(\sqrt{3x^2-2x-3}=5\Leftrightarrow3x^2-2x-28=0\Leftrightarrow\orbr{\begin{cases}x=\frac{1-\sqrt{85}}{3}\\x=\frac{1+\sqrt{85}}{3}\end{cases}}\)( tm)
Vậy : ....
Đặt t = √(3x² - 2x - 3) ≥ 0 (ĐK(*) => 3x² + 3x + 2 = (3x² - 2x - 3) + 5(x + 1) = t² + 5(x + 1)
Thay vào pt ta có:
t² + 5(x + 1) = (x + 6)t
<=> t² - t(x + 1) - 5t + 5(x + 1) = 0
<=> t(t - x - 1) - 5(t - x - 1) = 5
<=> (t - 5)(t - x - 1) = 0
TH1 t - 5 = 0 <=> t = 5 (thỏa mãn đk (*) => 3x² - 2x - 3 = 25
<=> 9x² - 6x + 1 = 85
<=> (3x - 1)² = 85
<=> 3x - 1 = ± √85
<=> x = (1/3)(1 ± √85)
TH2 t - x - 1 = 0 <=> t = x + 1 => 3x² - 2x - 3 = (x + 1)² <=> x² - 2x + 1 = 3 <=> (x - 1)² = 3 <=> x - 1 = ± √3 <=> x = 1 ± √3
=> t = 2 ± √3 > 0 (thỏa mãn Đk (*)
\(4\left(x+1\right)^2=\sqrt{2\left(x^4+x^2+1\right)}\)
\(\Leftrightarrow16\left(x+1\right)^4=2\left(x^4+x^2+1\right)\)
\(\Leftrightarrow\left(x^2+3x+1\right)\left(7x^2+11x+7\right)=0\)
\(\sqrt{\frac{x+56}{16}+\sqrt{x-8}}=\frac{x}{8}\)
\(\Leftrightarrow2\sqrt{x+56+16\sqrt{x-8}}=x\)
\(\Leftrightarrow2\sqrt{\left(\sqrt{x-8}+8\right)^2}=x\)
\(\Leftrightarrow2\sqrt{x-8}+16=x\)
\(\Leftrightarrow x=24\)
cho mình hỏi hai ý đầu thôi, hai ý sau mình giải ra rồi. Thanks Zero ~
\(2\sqrt{9\left(x-3\right)}-\sqrt{4\left(x-3\right)}=10+\frac{1}{2}\)
\(6\sqrt{\left(x-3\right)}-2\sqrt{\left(x-3\right)}=\frac{21}{2}\)
\(4\sqrt{\left(x-3\right)}=\frac{21}{2}\)
\(\sqrt{\left(x-3\right)}=\frac{21}{8}\)
\(x-3=\frac{441}{64}\)
\(x=\frac{633}{64}\)
Ta có:
\(\sqrt{3x^2+6x+12}+\sqrt{5x^4-10x^2+9}\)
\(=\sqrt{\left(3x^2+6x+3\right)+9}+\sqrt{\left(5x^4-10x^2+5\right)+4}\)
\(=\sqrt{3\left(x+1\right)^2+9}+\sqrt{5\left(x^2-1\right)^2+4}\ge3+2=5\left(1\right)\)
Ta lại có:
\(-2x^2-4x+3=-2\left(x+1\right)^2+5\le5\left(2\right)\)
Từ (1) và (2) dấu = xảy ra khi \(x=-1\)
ĐK \(x\ge-3\)
PT <=> \(x^3+5x^2+6x+2=4\sqrt{x+3}+2\sqrt{2x+7}\)
<=> \(2\left(x+3-2\sqrt{x+3}\right)+\left(x+5-2\sqrt{2x+7}\right)+x^3+5x^2+3x-9=0\)
+ Với x=-3 =>thỏa mãn
+Với \(x>-3\) ta liên hợp
\(2.\frac{x^2+2x-3}{x+3+2\sqrt{x+3}}+\frac{x^2+2x-3}{x+5+2\sqrt{2x+7}}+\left(x+3\right)\left(x^2+2x-3\right)=0\)
<=> \(\left(x^2+2x-3\right)\left(\frac{2}{x+3+2\sqrt{x+3}}+\frac{1}{x+5+2\sqrt{2x+7}}+x+3\right)=0\)
Do \(x>-3\)=> \(\frac{2}{x+3+2\sqrt{x+3}}+\frac{1}{x+5+2\sqrt{2x+7}}+x+3>0\)
=> \(x=1\)(TMĐKXĐ)
Vậy \(x=1;x=-3\)