Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
a) \(\sqrt{3x-2}=4\)
⇔\(\sqrt{3x-2}=\sqrt{4^2}\)
⇔\(3x-2=4^2=16\)
\(3x=16+2=18\)
\(x=18:3=6\)
Vậy \(x=6\)
b)\(\sqrt{4x^2+4x+1}-11=5\)
⇔\(\sqrt{\left(2x\right)^2+2\left(2x\right)\cdot1+1^2}-11=5\)
⇔\(\sqrt{\left(2x+1\right)^2}-11=5\)
TH1:
⇔\(\left(2x+1\right)-11=5\)
\(2x+1=5+11=16\)
\(2x=16-1=15\)
\(x=15:2=7,5\)
TH2:
⇔\(\left(2x+1\right)-11=-5\)
\(2x-1=-5+11=6\)
\(2x=6+1=7\)
\(x=7:2=3,5\)
Vậy \(x=\left\{7,5;3,5\right\}\)
(Câu này mình không chắc chắn lắm)
(Học sinh lớp 6 đang làm bài này)
Bài 4:
a: \(C=\left(\sqrt{x}-\dfrac{1}{\sqrt{x}}\right)\left(\dfrac{\sqrt{x}}{\sqrt{x}+1}+\dfrac{\sqrt{x}}{\sqrt{x}-1}\right)\)
\(=\dfrac{x-1}{\sqrt{x}}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)+\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{x-\sqrt{x}+x+\sqrt{x}}{\sqrt{x}}=\dfrac{2x}{\sqrt{x}}=2\sqrt{x}\)
b: C-6<0
=>C<6
=>\(2\sqrt{x}< 6\)
=>\(\sqrt{x}< 3\)
=>0<=x<9
Kết hợp ĐKXĐ, ta được: \(\left\{{}\begin{matrix}0< x< 9\\x\ne1\end{matrix}\right.\)
a) ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne9\end{matrix}\right.\)
b) Ta có: \(P=\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+3}{x-9}\right):\left(\dfrac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)
\(=\left(\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\dfrac{3x+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right):\left(\dfrac{2\sqrt{x}-2}{\sqrt{x}-3}-\dfrac{\sqrt{x}-3}{\sqrt{x}-3}\right)\)
\(=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}:\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)
\(=\dfrac{-3\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\)
\(=\dfrac{-3}{\sqrt{x}+3}\)
c) Để \(P< -\dfrac{1}{2}\) thì \(P+\dfrac{1}{2}< 0\)
\(\Leftrightarrow\dfrac{-3}{\sqrt{x}+3}+\dfrac{1}{2}< 0\)
\(\Leftrightarrow\dfrac{-6+\sqrt{x}+3}{2\left(\sqrt{x}+3\right)}< 0\)
\(\Leftrightarrow\sqrt{x}-3< 0\)
\(\Leftrightarrow x< 9\)
Kết hợp ĐKXĐ, ta được: \(0\le x< 9\)
a) Ta có: \(A=\left(\dfrac{x-5\sqrt{x}}{x-25}-1\right):\left(\dfrac{25-x}{x+2\sqrt{x}-15}-\dfrac{\sqrt{x}+3}{\sqrt{x}+5}+\dfrac{\sqrt{x}-5}{\sqrt{x}-3}\right)\)
\(=\left(\dfrac{\sqrt{x}\left(\sqrt{x}-5\right)}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}-1\right):\left(\dfrac{25-x}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}-\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}+\dfrac{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}\right)\)
\(=\left(\dfrac{\sqrt{x}}{\sqrt{x}+5}-1\right):\left(\dfrac{25-x-\left(x-9\right)+x-25}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}\right)\)
\(=\left(\dfrac{\sqrt{x}}{\sqrt{x}+5}-\dfrac{\sqrt{x}+5}{\sqrt{x}+5}\right):\left(\dfrac{25-x-x+9+x-25}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}\right)\)
\(=\dfrac{\sqrt{x}-\sqrt{x}-5}{\sqrt{x}+5}:\dfrac{x+9}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{-5}{\sqrt{x}+5}\cdot\dfrac{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}{x+9}\)
\(=\dfrac{-5\left(\sqrt{x}-3\right)}{x+9}\)
ĐKXĐ: x>=0; \(x\notin\left\{9;4\right\}\)\(P=\left(\dfrac{x-3\sqrt{x}}{x-9}-1\right):\left(\dfrac{9-x}{x+\sqrt{x}-6}-\dfrac{\sqrt{x}-3}{2-\sqrt{x}}-\dfrac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)
\(=\left(\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-1\right):\left(\dfrac{9-x}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}+\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)
\(=\left(\dfrac{\sqrt{x}}{\sqrt{x}+3}-1\right):\left(\dfrac{3-\sqrt{x}}{\sqrt{x}-2}+\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)
\(=\dfrac{\sqrt{x}-\sqrt{x}-3}{\sqrt{x}+3}:\dfrac{-\left(\sqrt{x}-2\right)}{\sqrt{x}+3}\)
\(=\dfrac{3}{\sqrt{x}-2}\)
Để P là số nguyên thì \(3⋮\sqrt{x}-2\)
=>\(\sqrt{x}-2\in\left\{1;-1;3;-3\right\}\)
=>\(\sqrt{x}\in\left\{3;1;5;-1\right\}\)
=>\(\sqrt{x}\in\left\{3;1;5\right\}\)
=>\(x\in\left\{9;1;25\right\}\)
Kết hợp ĐKXĐ, ta được; \(x\in\left\{1;25\right\}\)
Lời giải:
ĐKXĐ: $x\geq 0; x\neq 9; x\neq 4$
\(P=\frac{-3\sqrt{x}+9}{x-9}: \left[\frac{9-x}{(\sqrt{x}-2)(\sqrt{x}+3)}+\frac{(\sqrt{x}-3)(\sqrt{x}+3)}{(\sqrt{x}-2)(\sqrt{x}+3)}-\frac{(\sqrt{x}-2)^2}{(\sqrt{x}-2)(\sqrt{x}+3)}\right]\)
\(=\frac{-3(\sqrt{x}-3)}{(\sqrt{x}-3)(\sqrt{x}+3)}:\frac{9-x+x-9-(\sqrt{x}-2)^2}{(\sqrt{x}-2)(\sqrt{x}+3)}\)
\(=\frac{-3}{\sqrt{x}+3}:\frac{-(\sqrt{x}-2)^2}{(\sqrt{x}-2)(\sqrt{x}+3)}=\frac{-3}{\sqrt{x}+3}:\frac{-(\sqrt{x}-2)}{\sqrt{x}+3}\\ =\frac{-3}{\sqrt{x}+3}.\frac{\sqrt{x}+3}{-(\sqrt{x}-2)}=\frac{3}{\sqrt{x}-2}\)
Với $x\in\mathbb{Z}$, để $P$ nguyên thì $\sqrt{x}-2$ là ước nguyên của 3
$\Rightarrow \sqrt{x}-2\in \left\{1; -1; 3; -3\right\}$
$\Rightarrow \sqrt{x}\in \left\{3; 1; 5; -1\right\}$
$\Rightarrow x\in \left\{9; 1; 25\right\}$
Theo ĐKXĐ suy ra $x=1$ hoặc $x=25$
\(a,A=\dfrac{x-9-x+4+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}:\dfrac{x-2-x+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\\ A=\dfrac{\sqrt{x}-3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\sqrt{x}}\\ A=\dfrac{\sqrt{x}+1}{\sqrt{x}}\)
a) \(D=\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+3}{x-9}\right):\left(\dfrac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)
\(=\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)-3x+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}:\dfrac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\)
\(=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\dfrac{\sqrt{x}-3}{\sqrt{x}-1}\)
\(=\dfrac{-3\sqrt{x}+3}{\sqrt{x}+3}.\dfrac{1}{\sqrt{x}-1}=\dfrac{-3}{\sqrt{x}+3}\)
b) \(D=-\dfrac{3}{\sqrt{x}+3}< -\dfrac{1}{4}\)
\(\Leftrightarrow12>\sqrt{x}+3\Leftrightarrow\sqrt{x}< 9\)
\(\Leftrightarrow0\le x< 81\) và \(x\ne9\)
a) D=\(\left(\dfrac{2\sqrt{x}.\left(\sqrt{x}-3\right)+\sqrt{x}.\left(\sqrt{x}+3\right)-3x-3}{\left(\sqrt{x}+3\right).\left(\sqrt{x}-3\right)}\right)\) \(:\dfrac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\)
\(\Leftrightarrow D=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}-3\right).\left(\sqrt{x}+3\right)}\) \(.\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\)
\(\Leftrightarrow D=\dfrac{-3-3\sqrt{x}}{\sqrt{x}+3}.\dfrac{1}{\sqrt{x}+1}\)
\(\Leftrightarrow D=\dfrac{-3.\left(\sqrt{x}+1\right)}{\sqrt{x}+3}.\dfrac{1}{\sqrt{x}+1}\)
\(\Leftrightarrow D=\dfrac{-3}{\sqrt{x}+3}\)
b) Để D\(< \dfrac{-1}{4}\) \(\Leftrightarrow\dfrac{-3}{\sqrt{x}+3}< \dfrac{-1}{4}\)
\(\Leftrightarrow12>\sqrt{x}+3\Leftrightarrow9>\sqrt{x}\Leftrightarrow81>x\ge0\)