K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
KN
16 tháng 10 2019
Bài 1:
a) \(x^2\le x\)
\(\Leftrightarrow x^2-x\le0\)
\(\Leftrightarrow x\left(x-1\right)\le0\)
Mà x > x - 1 nên \(\hept{\begin{cases}x\ge0\\x-1\le0\end{cases}}\Leftrightarrow0\le x\le1\)
b) \(\hept{\begin{cases}ab=2\\bc=3\\ac=54\end{cases}}\Rightarrow\left(abc\right)^2=324=\left(\pm18\right)^2\)
\(TH1:abc=18\Rightarrow\hept{\begin{cases}c=9\\a=6\\b=\frac{1}{3}\end{cases}}\)
\(TH2:abc=-18\Rightarrow\hept{\begin{cases}c=-9\\a=-6\\b=\frac{-1}{3}\end{cases}}\)
30 tháng 8 2016
Đặt a = x + 2 (x > 0)
b = y + 2 (y > 0)
(x + 2 )(y + 2) > (x + 2) + (y + 2)
<=> xy + 4 + 2x + 2y > x + y + 4
<=> xy + x + y > 0 (đúng)
Vậy cái đầu đúng
+) Nếu \(a=b\) thì \(a+b=2a=ab=a^2\)
Vì \(a< 2\Leftrightarrow2a< a.a=a^2\) \(\Leftrightarrow ab>a+b\)
+) Nếu \(a< b\) thì \(a+b< a+b=2b< a.b\left(2< a\right)\)
\(\Leftrightarrow a+b< a.b\)
+) Nếu \(a>b\) thì \(a+b< a+a=2a< a.b\left(2< b\right)\)
\(\Leftrightarrow a+b< a.b\)
Vậy ....
Ta có: a\(=\)b\(\Rightarrow\)a\(+\)b\(=\)2a\(=\)a.b\(=\)a\(^2\)
Nếu a < 2\(\Rightarrow\)2a < a.a\(=\)a\(^2\)\(\Leftrightarrow\)a.b > a+b
Ta có: a < b\(\Rightarrow\)a+b < a+b\(=\)2b < a.b (a > 2)
\(\Rightarrow\)a+b < a.b
Ta có:a > b\(\Rightarrow\)a+b < a+a\(=\)2a<a.b (b > 2)
\(\Leftrightarrow\)a.b > a+b
Chúc bạn học tốt