Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) y2 - x2 - 6x - 9 = y2 - (x2 + 6x + 9) = y2 - (x + 3)2 = (y - x - 3)(x + y + 3)
b) x2 - y2 - 2y - 1 = x2 - (y2 + 2y + 1) = x2 - (y + 1)2 = (x - y - 1)(x + y + 1)
c) 3x2(xy - 2y) - 15(xy - 2y) = 3y(x - 2)(x2 - 5)
Ý a có rì đó sai sai nha bn
\(x^2-xy+x^2y-xy^2=x\left(x-y\right)+xy\left(x-y\right)=\left(x-y\right)\left(y+1\right)x\)
a) x2 - xy - 20y2
= x2 + 4xy - 5xy - 20y2
= x( x + 4y ) - 5y( x + 4y )
= ( x + 4y )( x - 5y )
b) x3 - x2y - 3xy2 + 2y3
= x3 + x2y - 2x2y - xy2 - 2xy2 + 2y3
= ( x3 + x2y - xy2 ) - ( 2x2y + 2xy2 - 2y3 )
= x( x2 + xy - y2 ) - 2y( x2 + xy - y2 )
= ( x2 + xy - y2 )( x - 2y )
a, \(x^3+2x^2+x-xy=x\left(x^2+2x+1-y\right)\)
\(=x\left[\left(x+1\right)^2-y\right]\)
b, \(x^3-y^3+2x^2-2y^2=\left(x-y\right)\left(x^2+xy+y^2\right)+2\left(x^2-y^2\right)\)
\(=\left(x-y\right)\left(x^2+xy+y^2\right)+2\left(x-y\right)\left(x+y\right)\)
\(=\left(x-y\right)\left[\left(x^2+xy+y^2\right)+2\left(x+y\right)\right]\)
\(=\left(x-y\right)\left(x^2+xy+y^2+2x+2y\right)\)
1. C. \(16x^2\left(x-y\right)\)\(-10y\left(y-1\right)\)\(=-2\left(y-x\right)\)\(\left(8x^2+5y\right)\)
2. C. \(\left(x-y\right)\left(x-y-3\right)\)
3. D. \(\left(x-2\right)\left(x+1\right)\)
4. C. \(y\left(x-2\right)\)\(5x\left(x-3\right)\)
5. D. \(3\left(x-2y\right)\)
1. Trong các kết quả sau kết quả nào sai
A. -17x^3y-34x^2y^2+51xy^3=17xy(x^2+2xy-3y^2)
B. x(y-1) +3(y-1)= -(1-y)(x+3)
C. 16x^2(x-y)-10y(y-1)=-2(y-x)(8x^2+5y)
2. Đa thức (x-y)^2+3(y-x) được phân tích thành nhân tử là:
A. (x+y)(x-y+3)
B. (x-y)(2x-2y+3)
C. (x-y)(x-y-3)
D. Cả 3 câu đều sai
3. Kết quả phân tích đa thức x(x-2)+(x-2) thành nhân tử
A. (x-2)x
B. (x-2)^2.x
C. x(2x-4)
D. (x-2)(x+1)
4. Kết quả phân tích 5x^2(xy-2y)-15x(xy-2y) thành nhân tử
A. (xy-2y)(5x^2-15x^2)
B. y(x-2)(5x^2-15x^2)
C. y(x-2)5x(x-3)
D. (xy-2y)5x(x-3)
5. Kết quả phân tích đa thức 3x-6y thành nhân tử là
A. 3(x-6y)
B. 3(3x-y)
C. 3(3x-2y)
D. 3(x-2y)
\(x^2+xy-2y^2\)
\(=x^2+2xy-xy-2y^2\)
\(=x\left(x+2y\right)-y\left(x+2y\right)\)
\(=\left(x-y\right)\left(x+2y\right)\)
\(x^2+xy-2y^2\)
\(=x(x+y)-2y\)