Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(\left|x\right|< 4\Leftrightarrow-4< x< 4\)
2) \(\left|x+21\right|>7\Leftrightarrow\orbr{\begin{cases}x+21>7\\x+21< -7\end{cases}}\Leftrightarrow\orbr{\begin{cases}x>-14\\x< -28\end{cases}}\)
3) \(\left|x-1\right|< 3\Leftrightarrow-3< x-1< 3\Leftrightarrow-2< x< 4\)
4) \(\left|x+1\right|>2\Leftrightarrow\orbr{\begin{cases}x+1>2\\x+1< -2\end{cases}}\Leftrightarrow\orbr{\begin{cases}x>1\\x< -3\end{cases}}\)
\(\left|x+\frac{1}{2}\right|+\left|3-y\right|=0\)
Vì \(\hept{\begin{cases}\left|x+\frac{1}{2}\right|\ge0\\\left|3-y\right|\ge0\end{cases}}\Rightarrow\)\(\left|x+\frac{1}{2}\right|+\left|3-y\right|\ge0\)
Dấu "="\(\Leftrightarrow\hept{\begin{cases}\left|x+\frac{1}{2}\right|=0\\\left|3-y\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{-1}{2}\\y=3\end{cases}}\)
a)\(\frac{x+1}{5}+\frac{x+3}{4}=\frac{x+5}{3}+\frac{x+7}{2}\)
\(\Leftrightarrow\frac{12\left(x+1\right)}{60}+\frac{15\left(x+3\right)}{60}=\frac{20\left(x+5\right)}{60}+\frac{30\left(x+7\right)}{60}\)
\(\Leftrightarrow12x+12+15x+45=20x+100+30x+210\)
\(\Leftrightarrow27x+57=50x+310\)
\(\Leftrightarrow27x+57-50x-310=0\)
\(\Leftrightarrow-23x-253=0\)
\(\Leftrightarrow x=-\frac{253}{23}\)
b)Tự làm
a) (2x - 3) - (x - 5) = (x + 2) - (x - 1)
2x - 3 - x + 5 = x + 2 - x + 1
x + 2 = 3
x = 3 - 2
x = 1
b) 2(x - 1) - 5 (x + 2) = - 10
2x - 2 - 5x - 10 = -10
2x - 5x = -10 + 10 + 2
-3x = 2
x = -2/3
Bài 1:
Ta có: \(x+\left(-\frac{31}{12}\right)^2=\left(\frac{49}{12}\right)^2-x\)
\(\Leftrightarrow2x=\frac{1440}{144}=10\)
\(\Rightarrow x=5\)
Khi đó: \(y^2=\left(\frac{49}{12}\right)^2-5=\frac{1681}{144}\)
=> \(\hept{\begin{cases}y=\frac{41}{12}\\y=-\frac{41}{12}\end{cases}}\)
+) Xét \(x\ge5\) có:
\(x-5-x=3\Leftrightarrow-5=3\) ( vô lí )
+) Xét x < 5 ta có:
\(5-x-x=3\Leftrightarrow5-2x=3\)
\(\Leftrightarrow2x=2\Leftrightarrow x=1\) ( t/m )
Vậy x = 1
Ta có :
\(\left|x-5\right|-x=3\)
\(\left|x-5\right|=3+x\)
\(\Rightarrow\left[{}\begin{matrix}x-5=3-x\\x-5=-\left(3-x\right)\end{matrix}\right.\)
TH1 : \(x-5=3-x\)
\(x+x=5+3\)
\(2x=8\)
\(\Rightarrow x=4\left(TM\right)\)
TH2 : \(x-5=-\left(3-x\right)\)
\(x-5=-3+x\)
\(x-x=5-3\)
\(x-x=2\) (vô lí)
Vậy \(x=4\) là giá trị cần tìm