Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,x^4+64=\left(x^4+16x^2+64\right)\)
\(=\left(x^2+8\right)^2-\left(4x\right)^2\)
\(=\left(x^2-4x+8\right).\left(x^2+4x+8\right)\)
\(b,x^5+x+1\)
\(=\left(x^2+x+1\right).\left(x^3-x^2+1\right)\)
...
\(=x^7+x^6+x^5-x^6-x^5-x^4+x^5+x^4+x^3-x^3-x^2-x+x^2+x+1\)
\(=\left(x^2+x+1\right)\left(x^5-x^4+x^3-x+1\right)\)
\(a,x^4+4x^2-5\)
\(=x^4+4x^2+4-9\)
\(=\left(x^2+2\right)^2-3^2\)
\(=\left(x^2+5\right)\left(x^2-1\right)\)
\(4.\left(x+5\right)\left(x+6\right)\left(x+10\right)\left(x+12\right)-3x^2\)
\(=4.\left[\left(x+5\right)\left(x+12\right)\right].\left[\left(x+6\right)\left(x+10\right)\right]-3x^2\)
\(=4.\left(x^2+17x+60\right)\left(x^2+16x+60\right)-3x^2\)
Đặt \(a=x^2+16x+60\) ta có :
\(4a.\left(a+x\right)-3x^2=4a^2+4ax+x^2-4x^2=\left(2a+x\right)^2-\left(2x\right)^2\)
\(=\left(2a+x-2x\right)\left(2a+x+2x\right)=\left(2a-x\right)\left(2a+3x\right)\)
Thay a , ta có ;
\(\left(2a-x\right)\left(2a+3x\right)=\left[2.\left(x^2+16x+60\right)-x\right].\left[2.\left(x^2+16x+60\right)+3x\right]\)
\(=\left(2x^2+32x+120-x\right)\left(2x^2+32x+120+3x\right)\)
\(=\left(2x^2+31x+120\right)\left(2x^2+35x+120\right)\)
\(=\left(2x^2+16x+15x+120\right)\left(2x^2+35x+120\right)\)
\(=\left[2x.\left(x+8\right)+15.\left(x+8\right)\right]\left(2x^2+35x+120\right)\)
\(=\left(x+8\right)\left(2x+15\right)\left(2x^2+35x+120\right)\)
ta có (x-1)(x-2)(x-3)(x-4)-15=(x-1)(x-4)(x-2)(x-3)-15=\(\left(x^2-5x+4\right)\left(x^2-5x+6\right)-15\)(*)
đặt \(t=x^2-5x+5\)thì pt (*) =\(\left(t-1\right)\left(t+1\right)-15=t^2-1-15\)\(=t^2-16=\left(t+4\right)\left(t-4\right)=\)\(\left(x^2-5x+5+4\right)\left(x^2-5x+5-4\right)=\)\(\left(x^2-5x+9\right)\left(x^2-5x+1\right)\)
x^7+x^5+1=x^7+x^6+x^5-x^6+1
=x^5(x^2+x+1)-[(x^3)^2-1]
=x^5(x^2+x+1)-(x^3+1)(x^3-1)
=x^5(x^2+x+1)-(x^3+1)(x-1)(x^2+x+1)
=(x^2+x+1)[x^5-(x^3+1)(x-1)]
=(x^2+x+1)(x^5-x^4+x^3-x+1)
Ta có: ( 4x + 1)(12x - 1)(3x + 2)(x+1) - 4
= [(4x+1)(3x+2)]. [(12x-1)(x+1)] - 4 = (12x2 +11x + 2)(12x2 + 11x - 1) - 4
Đặt a = 12x2 + 11x - 1. Thay vào biểu thức ta có:
(a+3).a - 4 = a2 + 3a - 4 =a2 + 4a - a - 4 = a(a+4) - (a+4)
= (a+4)(a-1)
=> (4x+1)(12x-1)(3x+2)(x+1) - 4 = (12x2 + 11x + 3)(12x2+11x - 2)
f(x) = (x+1)(x+3)(x+5)(x+7)+15
= (x+1)(x+7)(x+3)(x+5)+15
= (x2+7x+x+7)(x2+5x+3x+15)+15
= (x2+8x+7)(x2+8x+15)+15
Đặt X=x2+8x+11
f(x) = (X-4)(X+4)+15
= X2-16+15
= X2-12
= (X-1)(X+1)
=> f(x)= (x2+8x+11-1)(x2+8x+11+1)
f(x) = (x2+8x+10)(x2+8x+12)
Đến đây là vẫn còn phân tích được nhưng không dùng phương pháp đặt biến phụ:
f(x) = (x2+8x+10)(x2+8x+12)
= (x2+8x+10)[(x2+2x)+(6x+12)]
= (x2+8x+10)[x(x+2)+6(x+2)]
= (x+2)(x+6)(x2+8x+10)
A=(x+1)(x+3)(x+5)(x+7)+15=[(x+1)(x+7)][(x+3)(x+5)]+15=(x2+8x+7)(x2+8X+15)+15
Đặt t=x2+8x+7=> A=t2+8t+15=(t+4)2-1=(t+5)(t+3)=(x2+8x+12)(X2+8x+10)=(x+2)(x+6)(x2+8x+10)
vậy...........................................
a)\(x^8+x^4+1\)
\(=\left(x^8+2x^4+1\right)-x^4\)
\(=\left(x^4+1\right)^2-x^4\)
\(=\left(x^4-x^2+1\right)\left(x^4+x^2+1\right)\)
\(=\left(x^4-x^2+1\right)\left(x^2-x+1\right)\left(x^2+x+1\right)\)
b)\(x^{10}+x^5+1\)
\(=\left(x^{10}+x^9+x^8\right)-\left(x^9+x^8+x^7\right)+\left(x^7+x^6+x^5\right)-\left(x^6+x^5+x^4\right)+\left(x^5+x^4+x^3\right)-\left(x^3+x^2+x\right)+\left(x^2+x+1\right)\)
\(=x^8\left(x^2+x+1\right)-x^7\left(x^2+x+1\right)+x^5\left(x^2+x+1\right)-x^4\left(x^2+x+1\right)+x^3\left(x^2+x+1\right)-x\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^8-x^7+x^5-x^4+x^3-x+1\right)\)
a) \(x^8+x^4+1\)
= \(x^8+2x^4-x^4+1\)
= \(\left(x^4+1\right)^2-x^4\)
= \(\left(x^4-x^2+1\right)\left(x^4+x^2+1\right)\)
= \(\left(x^4-x^2+1\right)\left(x^4+2x^2-x^2+1\right)\)
= \(\left(x^4-x^2+1\right)\left[\left(x^2+1\right)^2-x^2\right]\)
= \(\left(x^4-x^2+1\right)\left(x^2+1-x^2\right)\left(x^2+1+x^2\right)\)
= \(\left(x^4-x^2+1\right)\left(2x^2+1\right)\)
b) \(x^{10}+x^5+1\)
= ( x10+x9+x8) - (x9+x8+x7) + (x7+x6+x5) - (x6+x5+x4) + (x5+x4+x3) - (x3+x2+x) + (x2+x+1)
= (x2+x+1)(x8 - x7+x5-x4+x3-x+1)