Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) BC^2= Ac^2+Ab^2=> Bc^2=74=> Bc=căn 74. b)vì Ad là phân giác nên góc BAE và góc FAC bằng 45. Hai tam giác ABE và AFC đều vuông và đều có 1 góc 45 nên => tam giác vuông cân. Câu c) AD vuông góc Ax ( hai tia phân giác trong và phan giác ngoài của cùng 1 góc thì vuông góc nhau). Xét 2 tam giác vuông FAK và FEC có. FA=FC( theo câu b). Góc FCE = AFK cùng phụ FEC( do Tg FEI vuôg tại I). Và FAK=EFC=90 => tg AFK=tgEFC(g.c.g)=> AK=EF. phiền bạn tự trình bày lại cho hợp lí. Chúc bạn học tốt
Ta có DC vuông góc với DE, BC vuông góc với BE
=> \(\widehat{DEB}=\widehat{DCB}=\frac{360-\widehat{CDE}-\widehat{CBE}}{2}=\frac{360-90-90}{2}=90\)
=>Tứ giác DCEB là hình cữ nhật
=> BC = DE (1) và BC // DE
=> \(\frac{CB}{DI}=\frac{AB}{AD}=\frac{1}{2}\Rightarrow DI=2CB\left(2\right)\)
Từ (1) và (2) => DE = EI hay E là trung điểm DI
Mà tam giác DAI vuông tại A
=> DE = AE
Hay tam giác EDA cân
bạn ấn vào đúng 0 sẽ ra kết quả mình làm bài này rồi dễ lắm
Câu 1 (Bạn tự vẽ hình giùm)
a) Mình xin chỉnh lại đề một chút: \(\Delta ABD=\Delta ACD\)
\(\Delta ABD\)và \(\Delta ACD\)có: AB = AC (\(\Delta ABC\)cân tại A)
BD = DC (D là trung điểm của BC)
Cạnh AD chung
=> \(\Delta ABD=\Delta ACD\) (c. c. c) (đpcm)
b) Ta có \(\Delta ABD=\Delta ACD\)(cm câu a) => \(\widehat{BAD}=\widehat{DAC}\)(hai góc tương ứng) => AD là tia phân giác của \(\widehat{BAC}\)(đpcm)
c) Mình xin chỉnh lại đề một chút: AD \(\perp\)BC tại D
Ta có \(\Delta ABD=\Delta ACD\)(cm câu a) => \(\widehat{BDA}=\widehat{CDA}\)(hai góc tương ứng)
Mà \(\widehat{BDA}+\widehat{CDA}\)= 180o (kề bù)
=> \(\widehat{BDA}=\widehat{CDA}=\frac{180^o}{2}\)= 90o => AD \(\perp\)BC tại D (đpcm)
b;c lấy ở đâu ra?
Mà mk cx ko hiểu "AD vuông tại Ax , AD vuông tại Dy" là j vậy bạn ??