\(x \in Z\) để giá trị biểu thức :

10n2+n-10 chia hết n-1

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 9 2016

Xét \(\frac{10n^2+n-10}{n-1}=\frac{10\left(n^2-n\right)+11\left(n-1\right)+1}{n-1}=\frac{10n\left(n-1\right)+11\left(n-1\right)+1}{n-1}\)

\(=10n+11+\frac{1}{n-1}\)

Vậy để biểu thức trên chia n-1 nhận giá trị nguyên thì n-1 là ước của 1

Từ đó liệt kê ra

20 tháng 5 2016

a) Cho 3n +1=0 => n=\(\frac{-1}{3}\)

Sau đó thay vào biểu thức 3n3+10n2-5 sẽ tìm ra n=-4

b) Cho n-1=0 => n=1

Sau đó thay vào biểu thức 10n2+n -10 sẽ  tìm ra n=1

Cho mình nha!!! <3

23 tháng 12 2018

ta có : \(3n^3+10n^2-5⋮3n+1\)

\(\Rightarrow3n^3+n^2+9n^2+3n-3n-1-4⋮3n+1\)

\(\Rightarrow n\left(3n+1\right)+3n\left(3n+1\right)-\left(3n+1\right)-3⋮3n+1\)

\(\Rightarrow\left(n+3n+1\right)\left(3n+1\right)-4⋮3n+1\)

mà \(\left(4n+1\right)\left(3n+1\right)⋮3n+1\)

\(\Rightarrow3n+1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)

\(\Rightarrow n\in\left\{0;\pm1\right\}\)

20 tháng 5 2016

a) Cho x- x + 5=0 =>x={ \(\frac{1}{2}+\frac{\sqrt{19}}{2}i;\frac{1}{2}-\frac{\sqrt{19}}{2}i\) }

Thay giá trị của x là \(\frac{1}{2}+\frac{\sqrt{19}}{2}i\)hoặc \(\frac{1}{2}-\frac{\sqrt{19}}{2}i\) vừa tìm được vào x- x+ 6x2- x sẽ luôn được kết quả là -5

=>-5 +a=0 => a=5

b) Cho x+2=0 => x=-2

Thay giá trị của x vào biểu thức 2x-  3x+ x sẽ được kết quả là -30

=> -30 + a=0 => a=30 

a) Cho 3n +1 =0 => n= \(\frac{-1}{3}\)

Thay n= \(\frac{-1}{3}\)vào biểu thức 3n+ 10n2 -5 sẽ được kết quả -4

Vậy n = -4

b) Cho n-1=0 => n=1

 Thay n=1 vào biểu thức 10n2 + n -10 sẽ được kết quả là 1

Vậy n = 1

26 tháng 12 2017

https://goo.gl/BjYiDy

26 tháng 12 2017

Ta có : n3 - 2n + 3n + 3 

= n3 - n + 3 

= n(n2 - 1) 

= n(n - 1)(n + 1) + 3 

Để n3 - 2n + 3n + 3 chia hết cho n - 1

=> n(n - 1)(n + 1) + 3  chia hết cho n - 1

=> 3  chia hết cho n - 1

=> n - 1 thuộc Ư(3) = {-3;-1;1;3}

=> n = {-2;0;2;4}

22 tháng 11 2017

cần chứng minh\(2n^3-3n^2+n+3\)là số lẻ

n2-n là số chẵn

25 tháng 9 2021

Mình đang cần gấp

1 tháng 10 2017

\(\dfrac{3n^3+10n^2-5}{3n+1}=\dfrac{n^2\left(3n+1\right)+3n\left(3n+1\right)-\left(3n+1\right)-4}{3n+1}\)3n+1 ={+-4;+-2;+-1}

3n={-5;-3;-2;0;1;3)

n={-1;0;1}

16 tháng 12 2016

Đặt tính ra, kết quả của số dư là \(-\frac{11}{3}n-5\)

Để biểu thức \(3n^3+10n^2-5\)chia hết cho biểu thức \(3n-1\)thì:

\(\frac{-11}{3}n-5=0\)

\(=>\frac{-11}{3}n=5\)

\(=>n=\frac{-15}{11}\)