K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(b=\frac{2}{2\times3}+\frac{2}{3\times5}+\frac{2}{5\times7}+...+\frac{2}{99\times101}\)

\(b=\left(\frac{1}{3}+\frac{1}{3}\right)-\left(\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}\right)-\frac{1}{101}\)

\(b=\frac{2}{3}-\frac{1}{101}=\frac{202}{303}-\frac{3}{303}\)

\(b=\frac{199}{303}\)

16 tháng 6 2015

A = 1/1.2 + 1/2.3 + 1/3.4 + .... + 1/99.100

A = 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 +.....+ 1/99- 1/100

A= 1 - 1/100

A= 99/100

16 tháng 6 2015

AXXXXXXXXXXXXXXXXXXXXXXX

ghi xong hết rồi

mạng nó rớt, ấn gửi trả lời mà không biết

tong teo

30 tháng 7 2016

\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{97.99}+\frac{2}{99.101}\)

\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}+\frac{1}{99}-\frac{1}{101}\)

\(=1-\frac{1}{101}\)

\(=\frac{100}{101}\)

30 tháng 7 2016

\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)

\(=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)

\(=1-\frac{1}{101}\)

\(=\frac{101}{101}-\frac{1}{101}=\frac{100}{101}\)

30 tháng 7 2016

\(\frac{5}{1.3}+\frac{5}{3.5}+...+\frac{5}{99.101}\)

\(=\frac{5}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}\right)\)

\(=\frac{5}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\right)\)

\(=\frac{5}{2}.\left(1-\frac{1}{101}\right)\)

\(=\frac{5}{2}.\frac{100}{101}\)

\(=\frac{250}{101}\)

28 tháng 1 2017

chuẩn quá

28 tháng 1 2017

uk, tết mà chẳng có gì thú vị

6 tháng 11 2019

\(A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\)

\(\Rightarrow2A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)

\(\Rightarrow2A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)

\(\Rightarrow2A=1-\frac{1}{101}\)

\(\Rightarrow2A=\frac{100}{101}\)

\(\Rightarrow A=\frac{100}{101}:2\)

\(\Rightarrow A=\frac{50}{101}.\)

Chúc bạn học tốt!

6 tháng 11 2019

\(A=\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+...+\frac{1}{99\cdot101}\\ A=\frac{1}{2}\left(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{99\cdot101}\right)\\ A=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\\ A=\frac{1}{2}\left(1-\frac{1}{101}\right)\\ A=\frac{1}{2}\cdot\frac{100}{101}\\ A=\frac{50}{101}\)

\(B=1-2+3-4+...+49-50\\ B=\left(1-2\right)+\left(3-4\right)+...+\left(49-50\right)\\ B=\left(-1\right)+\left(-1\right)+...+\left(-1\right)\text{ (có 25 số -1)}\\ B=\left(-1\right)\cdot25=-25\)

8 tháng 5 2017

Đặt \(A=\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+...+\frac{1}{99\cdot101}\)

\(2A=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-...+\frac{1}{99}-\frac{1}{101}\)

\(2A=\frac{100}{101}\)

\(A=\frac{50}{101}\)

b) \(\frac{2^{10}+3^{31}+2^{40}+3^6}{2^{11}\cdot3^{31}+2^{41}\cdot3^6}=\frac{2^{10}+2^{40}}{2^{11}+2^{41}}\)

\(\frac{2^{10}+2^{40}}{2^{11}+2^{41}}=\frac{1}{2}\)

8 tháng 5 2017

=1/2x(1/1.3+1/3.5+...+1/99.101)

=1/2.(1-1/3+1/3-1/5+1/5-1/7+...+1/99-1/101)

=1/2.(1-1/101)

=1/2.100/101

=50/101

chúc bạn học tốt

3 tháng 2 2017

bai nay sai de

3 tháng 2 2017

1.3+3.5+5.7+......+99.101

=1-101

=-100

ko biết đúng hay sai