Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$(x+1)^2+(y+1)^2+(x-y)^2=2$
Vì $(y+1)^2, (x-y)^2\geq 0$ nên:
$(x+1)^2=2-(y+1)^2-(x-y)^2\leq 2$
Mà $(x+1)^2$ là scp nên $(x+1)^2=0$ hoặc $(x+1)^2=1$
TH1: $(x+1)^2=0\Rightarrow x=-1$
Khi đó: $(y+1)^2+(-1-y)^2=2$
$\Rightarrow 2(y+1)^2=2\Rightarrow (y+1)^2=1$
$\Rightarrow y+1=1$ hoặc $y+1=-1$
$\Rightarrow y=0$ hoặc $y=-2$ (thỏa mãn)
TH2: $(x+1)^2=1\Rightarrow x+1=1$ hoặc $x+1=-1$
$\Rightarrow x=0$ hoặc $x=-2$
Nếu $x=0$ thì:
$1+(y+1)^2+(-y)^2=2$
$\Rightarrow 2y^2+2y=0$
$\Rightarrow 2y(y+1)=0\Rightarrow y=0$ hoặc $y=-1$
Nếu $x=-2$ thì:
$1+(y+1)^2+(-2-y)^2=2$
$\Rightarrow 2y^2+6y+4=0$
$\Rightarrow y^2+3y+2=0$
$\Rightarrow (y+1)(y+2)=0\Rightarrow y=-1$ hoặc $y=-2$
Vậy $(x,y)=(-1,0), (-1,-2), (0,0), (0,-1), (-2, -1), (-2,-2)$
=> (y + 2).x2 + 1 - 4 = y2 - 4
=> (y+2).x2 - 3 = (y - 2)(y+2)
=> (y+2)x2 - (y+2).(y - 2) = 3
=> (y+2)(x2 - y + 2) = 3
=> y + 2 \(\in\) Ư(3) = {3;-3;1;-1}
y+2 | 3 | -3 | 1 | -1 |
y | 1 | -5 | -1 | -3 |
x2 -y + 2 | 1 | -1 | 3 | -3 |
x2 | 0 | -8 | 0 | -8 |
x | 0 | loại | 0 | loại |
Vậy (x;y) = (0;1); (0;-1)
a ) Vì (x + 1)2 + (y - 1)2 + (z - 1)2 ≥ 0
Để (x + 1)2 + (y - 1)2 + (z - 1)2 = 0
<=> (x + 1)2 = 0 ; (y - 1)2 = 0; (z - 1)2 = 0
=> x = - 1 ; y = 1 ; z = 1
b ) Vì 3.(x - 1)2 + 2.(x - 3)2 ≥ 0
Để 3.(x - 1)2 + 2.(x - 3)2 = 0
<=> 3(x - 1)2 = 0; 2.(x - 3)2 = 0
=> x = 1 hoặc x = 3
c ) Vì x2 + (x - 1)2 ≥ 0
Để x2 + (x - 1)2 = 0
<=> x2 = 0 ; (x - 1)2 = 0
=> x = 0 hoặc x = 1
** Bổ sung điều kiện $x,y$ là số nguyên.
$x^2+(y+1)^2=1$
$\Rightarrow x^2=1-(y+1)^2\leq 1$ (do $(y+1)^2\geq 0$)
$\Rightarrow -1\leq x\leq 1$
Mà $x$ nguyên nên $x\in \left\{-1; 0; 1\right\}$.
Nếu $x=0$ thì $(y+1)^2=1-x^2=1\Rightarrow y+1=\pm 1\Rightarrow y=0$ hoặc $y=-2$
Nếu $x=-1$ thì $(y+1)^2=1-x^2=0\Rightarrow y=-1$
Nếu $x=1$ thì $(y+1)^2=1-x^2=0\Rightarrow y=-1$