\(\text{Rút gọn biểu thức : }\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8-6\sqrt{x-1}}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2015

\(\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8-6\sqrt{x-1}}\) có ĐKXĐ là x>=1

\(=\sqrt{\left(x-1\right)-4\sqrt{x-1}+4}+\sqrt{\left(x-1\right)-6\sqrt{x-1}+9}\)

\(=\sqrt{\sqrt{x-1}^2-4\sqrt{x-1}+2^2}+\sqrt{\sqrt{x-1}^2-6\sqrt{x-1}+3^2}\)

\(=\sqrt{\left(\sqrt{x-1}-2\right)^2}+\sqrt{\left(\sqrt{x-1}-3\right)^2}\)

\(=\left(\sqrt{x-1}-2\right)+\left(\sqrt{x-1}-3\right)=2\sqrt{x-1}-5\) với x>5

\(=-\left(\sqrt{x-1}-2\right)-\left(\sqrt{x-1}-3\right)=-2\sqrt{x-1}+5\) với x<5

8 tháng 8 2015

thấy lạ nha , nãy giờ toàn thấy tên Chung Tình Là Tui , yêu tao ư kiếp sau nhé , yêu ông ư tui thà nhảy lầu còn hơn vậy ?

31 tháng 7 2019

mình nghĩ bài này sai đề, 

ĐÚng phải là\(\sqrt[3]{2+\sqrt{3}}\)

(   KHÔNG CHẮC NỮA   :D   )

1 tháng 8 2019

\(\text{sai đề chú ơi}\)

5 tháng 7 2018

\(\frac{\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}}{\frac{16}{\frac{16}{x^2}-\frac{8}{x}+1}}\)\(=\frac{\sqrt{x-4+4\sqrt{x-4}+4}+\sqrt{x-4-4\sqrt{x-4}+4}}{\left(\frac{4}{x}-1\right)^2}\)

\(\frac{\sqrt{\left(\sqrt{x-4}+2\right)^2}+\sqrt{\left(\sqrt{x-4}-2\right)^2}}{\left(\frac{4}{x}-1\right)^2}\)\(=\frac{\sqrt{x-4}+2+\sqrt{x-4}-2}{\left(\frac{4-x}{x}\right)^2}\)

\(=\frac{2\sqrt{x-4}}{\left(\frac{4-x}{x}\right)^2}=\frac{2x^2\sqrt{x-4}}{\left(x-4\right)^2}=\frac{2x^2}{\sqrt{x-4}^3}\)

5 tháng 7 2018

bài bạn YIM YIM sai nhé, mk làm lại và chỉnh lại đề luôn, bạn tham khảo:

ĐK: \(x>4\)

\(A=\frac{\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}}{\frac{16}{x^2}-\frac{8}{x}+1}\)

\(=\frac{\sqrt{\left(\sqrt{x-4}+2\right)^2}+\sqrt{\left(\sqrt{x-4}-2\right)^2}}{\left(1-\frac{4}{x}\right)^2}\)

\(=\frac{\sqrt{x-4}+2+\left|\sqrt{x-4}-2\right|}{\left(\frac{x-4}{x}\right)^2}\)

Nếu \(4< x\le8\)thì:  

   \(A=\frac{\sqrt{x-4}+2+2-\sqrt{x-4}}{\left(\frac{x-4}{x}\right)^2}\)

\(=\frac{4x^2}{\left(x-4\right)^2}\)

Nếu   \(x>8\)thì:

\(A=\frac{\sqrt{x-4}+2+\sqrt{x-4}-2}{\frac{\left(x-4\right)^2}{x^2}}=\frac{2x^2}{\sqrt{x-4}^3}\)

31 tháng 8 2016

a) A= (\(\left(\frac{1+\sqrt{x}}{1+\sqrt{x}}-\frac{\sqrt{x}}{1+\sqrt{x}}\right):\left(\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x-2}\right)}+\frac{\sqrt{x}+2}{x-2\sqrt{x}-3\sqrt{x}+6}\right)\)

A=\(\left(\frac{1+\sqrt{x}-\sqrt{x}}{1+\sqrt{x}}\right):\left(\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}+\frac{\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-2\right)-3\left(\sqrt{x}-2\right)}\right)\)

A= \(\left(\frac{1}{1+\sqrt{x}}\right):\left(\frac{x-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\frac{x-4}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}+\frac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\right)\)

A=\(\left(\frac{1}{1+\sqrt{x}}\right):\left(\frac{x-9-x+4+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\right)\)

A=\(\left(\frac{1}{1+\sqrt{x}}\right):\left(\frac{\sqrt{x}-3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\right)\)

A=\(\frac{\sqrt{x}-2}{\sqrt{x}+1}\)

30 tháng 8 2016

bạn rút gọc câu a chưa

ĐỀ KIỂM TRA 1 TIẾT TỔNG HỢP​1. Tính \(\sqrt{6+2\sqrt{8\sqrt{2}-9}}-\sqrt{7-\sqrt{2}}\)  (căn 7 - căn căn 2 ) (1đ)2. Rút gọn: \(\frac{2\sqrt{2}+2\sqrt{3}+4}{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{12}+5}\)(1đ)3. Rút gọn \(\sqrt{\frac{27\left(m^2-6m+9\right)}{48}}\)với m < 3 (1đ)4. Tìm GTNN của biểu thức và x tương ứng: \(M=\sqrt{16x^2-8x+2}\)(0,5đ)5. Cho biểu thức:...
Đọc tiếp

ĐỀ KIỂM TRA 1 TIẾT TỔNG HỢP

1. Tính \(\sqrt{6+2\sqrt{8\sqrt{2}-9}}-\sqrt{7-\sqrt{2}}\)  (căn 7 - căn căn 2 ) (1đ)

2. Rút gọn: \(\frac{2\sqrt{2}+2\sqrt{3}+4}{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{12}+5}\)(1đ)

3. Rút gọn \(\sqrt{\frac{27\left(m^2-6m+9\right)}{48}}\)với m < 3 (1đ)
4. Tìm GTNN của biểu thức và x tương ứng: \(M=\sqrt{16x^2-8x+2}\)(0,5đ)

5. Cho biểu thức: (2,5đ)
\(A=\left(\frac{1}{x-\sqrt{x}}+\frac{1}{\sqrt{x}-1}\right):\frac{\sqrt{x}+1}{x-2\sqrt{x}+1}\)với x >0, x khác 1 
Hãy tìm x để A có nghĩa rồi:
a/ Rút gọn A
b/ Tìm x biết A =-1 
6. Giai phương trình \(\sqrt{16x-32}-\sqrt{4x-8}+\sqrt{9x-18}=1\)(0,5đ)
7. Giai phương trình \(\sqrt{x^2+2x+6}=x+2\)(0,5đ)
8. Thực hiện phép tính: \(B=\sqrt{5}\left(1-\sqrt{5}\right)+\sqrt{\sqrt{5}+1}.\sqrt{\sqrt{5}-1}\)(0,5đ)
9. Rút gọn biểu thức E = \(\sqrt{\frac{b}{a}}+ab\sqrt{\frac{1}{ab}}-\frac{b}{a}.\sqrt{\frac{a}{b}}\)(0,5đ)
10. Giai phương trình sau: \(\sqrt{4x-12}-\sqrt{25x-75}-\sqrt{x-3}=4-\sqrt{16x-48}\)(0,5đ)
11. Cho biểu thức: \(F=\left(\frac{1}{\sqrt{a}-1}-\frac{1}{\sqrt{a}}\right):\left(\frac{\sqrt{a}-1}{\sqrt{a}+2}-\frac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)với a >0, a khác 1
a/ Rút gọn F
b/ Tìm giá trị của a để trị F = -F
 

0
10 tháng 4 2020

a)ĐKXĐ : x > 0 

P = \(\left(\frac{x-1}{\sqrt{x}}\right):\left(\frac{\sqrt{x}-1}{\sqrt{x}}+\frac{1-\sqrt{x}}{\sqrt{x}\left(1+\sqrt{x}\right)}\right)\)

    = \(\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}}:\frac{1}{\sqrt{x}}.\left(\sqrt{x}-1+\frac{\sqrt{x}-1}{\sqrt{x}+1}\right)\)

    = \(\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}}:\frac{\sqrt{x}-1}{\sqrt{x}}.\left(1-\frac{1}{\sqrt{x}+1}\right)\)

     = \(\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}}:\frac{\left(\sqrt{x}-1\right).\sqrt{x}}{\sqrt{x}}\)

       = \(\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}.\left(\sqrt{x}-1\right)}=\frac{\sqrt{x}+1}{\sqrt{x}}\)

Vậy P = \(\frac{\sqrt{x}+1}{\sqrt{x}}\)

b) x = \(\frac{2}{2+\sqrt{3}}=\frac{2\left(2-\sqrt{3}\right)}{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}=\frac{2.\left(2-\sqrt{3}\right)}{4-3}=4-2\sqrt{3}=\left(\sqrt{3}-1\right)^2\)

\(\Rightarrow\sqrt{x}=\sqrt{3}-1\)

=> P = \(\frac{\sqrt{x}+1}{\sqrt{x}}=\frac{\sqrt{3}-1+1}{\sqrt{3}-1}=\frac{\sqrt{3}}{\sqrt{3}-1}\)

        = \(\frac{\sqrt{3}\left(\sqrt{3}+1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3+1}\right)}=\frac{3+\sqrt{3}}{3-1}=\frac{3+\sqrt{3}}{2}\)

c)\(P\sqrt{x}=6\sqrt{x}-3-\sqrt{x-4}\)

\(\Leftrightarrow\frac{\left(\sqrt{x}+1\right)\sqrt{x}}{\sqrt{x}}=6\sqrt{x}-3-\sqrt{x-4}\)

\(\Leftrightarrow\sqrt{x}+1=6\sqrt{x}-3-\sqrt{x-4}\)

\(\Leftrightarrow\sqrt{x-4}=5\sqrt{x-4}\)

Đặt \(\hept{\begin{cases}a=\sqrt{x}\\b=\sqrt{x-4}\end{cases}\Rightarrow a^2+b^2=x-\left(x-4\right)=4}\)

\(\Rightarrow\hept{\begin{cases}a^2-b^2=4\\b=5a-4\end{cases}\Rightarrow\hept{\begin{cases}a^2-\left(5a-4\right)^2=4\left(^∗\right)\\b=5a-4\end{cases}}}\)

Từ (*) <=> a2 -(25a2 -40a + 16 ) =4

        <=>  -24a2 + 40a - 20        = 0

=> \(\Delta'=-80< 0\)

=> PT vô nghiệm 

=> ko tồn tại x thỏa mãn

20 tháng 4 2020

bn lm sai đề bài r 

8 tháng 8 2015

làm tiếp nè:

\(\left|\sqrt{x-1}-2\right|+\left|\sqrt{x-1}-3\right|\)

*)Nếu \(\sqrt{x-1}\)>3<=>x-1>9<=>x>10 thì \(\sqrt{x-1}\)-2>0 \(\sqrt{x-1}\)-3>0

Ta có:|\(\sqrt{x-1}\)-2|+|\(\sqrt{x-1}\)-3|=\(\sqrt{x-1}\)-2+\(\sqrt{x-1}\)-3=2\(\sqrt{x-1}\)-5

*)Nếu 2<\(\sqrt{x-1}\)<3<=>4<x-1<9... làm tiếp đi bận mất rồi

26 tháng 7 2019

ĐK : \(x\ge1\)

\(A=\sqrt{x+2\sqrt{x-1}}-\sqrt{x+8+6\sqrt{x-1}}\)

\(=\sqrt{x-1+2\sqrt{x-1}}-\sqrt{x-1+6\sqrt{x-1}+9}\)

\(=\sqrt{(\sqrt{x-1}-1)^2}-\sqrt{(\sqrt{x-1}+3)^2}\)

\(=\left|\sqrt{x-1}-1\right|-\left|\sqrt{x-1}+3\right|\)

\(=\hept{\begin{cases}1-\sqrt{x-1}-\sqrt{x-1}-3;1\le x\le2\\\sqrt{x-1}-1-\sqrt{x-1}-3;x>2\end{cases}}\)

\(=\hept{\begin{cases}-2-2\sqrt{x-1};1\le x\le2\\-4;x>2\end{cases}}\)