\(\left|x-1\right|+\left|x-4\right|\)

 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2018

Gọi /x-1/ +/x-4/ là A

 Vì |x-1| và |x-4| \(\le\)0 với mọi x nên A\(\le\)với mọi x

 Dấu "=" xảy ra khi : |x-1|+|x-4|=0

                                 => ta có trường hợp sau thỏa mãn   \(\hept{\begin{cases}x-1=0\\x-4=0\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\x=4\end{cases}}\)

    Vậy giá trị lớn nhất của A = 0 khi x= 1 và x= 4 

21 tháng 7 2018

Để bt có gt lớn nhất thì x phải là số lớn nhất. 

Mà ko có STN lớn nhất 

=> Ko có giá trị của x thỏa mãn đề bài

1 tháng 8 2019

Tìm GTNN

Ta có: A = |x - 1| + |x - 4|

=>  A = |x - 1| + |4 - x| \(\ge\)|x - 1 + 4 - x| = |3| = 3

=> A \(\ge\)3

Dấu "=" xảy ra <=> (x - 1)(x - 4) \(\ge\)0

<=> \(1\le x\le4\)

Vậy Min A = 3 <=> \(1\le x\le4\)

Tìm GTLN

Ta có: -|x + 2| \(\le\)\(\forall\)x

hay A  \(\le\)\(\forall\)x

Dấu "=" xảy ra <=> x + 2 = 0 <=> x = -2

Vậy Max A = 0 <=> x = -2

31 tháng 3 2017

2.

a/\(A=5-I2x-1I\)

Ta thấy: \(I2x-1I\ge0,\forall x\)

nên\(5-I2x-1I\le5\)

\(A=5\)

\(\Leftrightarrow5-I2x-1I=5\)

\(\Leftrightarrow I2x-1I=0\)

\(\Leftrightarrow2x=1\)

\(\Leftrightarrow x=\frac{1}{2}\)

Vậy GTLN của \(A=5\Leftrightarrow x=\frac{1}{2}\)

b/\(B=\frac{1}{Ix-2I+3}\)

Ta thấy : \(Ix-2I\ge0,\forall x\)

nên \(Ix-2I+3\ge3,\forall x\)

\(\Rightarrow B=\frac{1}{Ix-2I+3}\le\frac{1}{3}\)

\(B=\frac{1}{3}\)

\(\Leftrightarrow B=\frac{1}{Ix-2I+3}=\frac{1}{3}\)

\(\Leftrightarrow Ix-2I+3=3\)

\(\Leftrightarrow Ix-2I=0\)

\(\Leftrightarrow x=2\)

Vậy GTLN của\(A=\frac{1}{3}\Leftrightarrow x=2\)

12 tháng 12 2017

1/ \(A=3\left|2x-1\right|-5\)

Ta có: \(\left|2x-1\right|\ge0\)

\(\Rightarrow3\left|2x-1\right|\ge0\)

\(\Rightarrow3\left|2x-1\right|-5\ge-5\)

Để A nhỏ nhất thì \(3\left|2x-1\right|-5\)nhỏ nhất

Vậy \(Min_A=-5\)

8 tháng 9 2019

Hai bài này có mấy cái bình phương sẵn rồi nên chỉ sài cái bất đẳng thức \(A^2\ge0\)là được rồi

a/Ta có \(\left(2x+\frac{1}{3}\right)^4\ge0\)

Do đó \(\left(2x+\frac{1}{3}\right)^4-1\ge0-1\)

\(\Leftrightarrow A\ge-1\)

Tới đây vì A lớn hơn hoặc bằng -1 nên giá trị nhỏ nhất của A là -1

Vậy Giá trị nhỏ nhất của A là -1

b/Bạn làm hệt như câu a, với lại nếu bạn suy ra \(A\ge-1\)thì bạn kết luận luôn Giá trị nhỏ nhất của A là -1

17 tháng 4 2020

eeeee

trả lời giúp mk với 

7 tháng 8 2016

chịu , hổng bt lun ak

8 tháng 11 2015

a) Vì (x+2)2 >/  0 

=> \(A\le\frac{3}{0+4}=\frac{3}{4}\Rightarrow Amax=\frac{3}{4}\Leftrightarrow x+2=0\Rightarrow x=-2\)

b) Vì \(\left(x+1\right)^2\ge0;\left(y+3\right)^2\ge0\)

\(B\ge0+0+1=1\Rightarrow Bmin=1\Leftrightarrow\int^{x+1=0}_{y+3=0}\Rightarrow\int^{x=-1}_{y=-3}\)

11 tháng 8 2018

Đặt \(C=\frac{3\left|x\right|+2}{4\left|x\right|-5}\)

\(\Rightarrow\frac{4}{3}C=\frac{4}{3}.\left(\frac{3\left|x\right|+2}{4\left|x\right|-5}\right)=\frac{12\left|x\right|+8}{12\left|x\right|-15}=\frac{12\left|x\right|-15+23}{12\left|x\right|-15}\)

                                                                \(=1+\frac{23}{12\left|x\right|-15}\)

Để C đạt GTLN \(\Leftrightarrow\left(12\left|x\right|-15\right)_{min}\)

Vì \(\left|x\right|\ge0\left(\forall x\right)\Rightarrow12\left|x\right|\ge0\Rightarrow12\left|x\right|-15\ge-15\)

Dấu "=" xảy ra <=> \(\left|x\right|=0\Leftrightarrow x=0\)

Vậy ...