Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\Leftrightarrow\left\{{}\begin{matrix}3x-2>-4\\3x-2< 4\end{matrix}\right.\Leftrightarrow-\dfrac{2}{3}< x< 2\)
c: \(\Leftrightarrow\left[{}\begin{matrix}3x-1>5\\3x-1< -5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>2\\x< -\dfrac{4}{3}\end{matrix}\right.\)
d: \(\Leftrightarrow\left[{}\begin{matrix}3x+1>x-2\\3x+1< -x+2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x>-3\\4x< 1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>-\dfrac{3}{2}\\x< \dfrac{1}{4}\end{matrix}\right.\)
a)\(2\left|2x-3\right|=\frac{1}{2}\)
\(\Leftrightarrow\left|2x-3\right|=\frac{1}{4}\)
\(\Rightarrow\left[{}\begin{matrix}2x-3=\frac{1}{4}\\2x-3=-\frac{1}{4}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{13}{8}\\x=\frac{11}{8}\end{matrix}\right.\)
Vậy....
b)\(7,5-3\left|5-2x\right|=-4,5\)
\(\Leftrightarrow\left|5-2x\right|=4\)
\(\Rightarrow\left[{}\begin{matrix}5-2x=4\\5-2x=-4\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{2}\\x=\frac{9}{2}\end{matrix}\right.\)
VẬy...
c)\(\left|3x-4\right|+\left|5-2x\right|=0\)
Có: \(\left|3x-4\right|\ge0với\forall x\\ \left|5-2x\right|\ge0với\forall x\)
\(\Rightarrow\left[{}\begin{matrix}3x-4=0\\5-2x=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{4}{3}\\x=\frac{5}{2}\end{matrix}\right.\)
\(\Rightarrow x\in\varnothing\)
Bài 1 và 2 dễ rồi bạn tự làm được
Bài 3 :
\(a)\) Ta có :
\(\left|2x+3\right|\ge0\)
Mà \(\left|2x+3\right|=x+2\)
\(\Rightarrow\)\(x+2\ge0\)
\(\Rightarrow\)\(x\ge-2\)
Trường hợp 1 :
\(2x+3=x+2\)
\(\Leftrightarrow\)\(2x-x=2-3\)
\(\Leftrightarrow\)\(x=-1\) ( thoã mãn )
Trường hợp 2 :
\(2x+3=-x-2\)
\(\Leftrightarrow\)\(2x+x=-2-3\)
\(\Leftrightarrow\)\(3x=-5\)
\(\Leftrightarrow\)\(x=\frac{-5}{3}\) ( thoã mãn )
Vậy \(x=-1\) hoặc \(x=\frac{-5}{3}\)
Chúc bạn học tốt ~
1)
a) \(|x-3,5|=7,5\)
\(\Rightarrow x-3,5=7,5\)
hay \(x-3,5=-7,5\)
TH1 : \(x-3,5=7,5\Rightarrow x=7,5+3,5=11\)
TH2 : \(x-3,5=-7,5\Rightarrow x=-7,5+3,5=-4\)
b) \(|x+\dfrac{4}{5}|-\dfrac{1}{2}=0\)
\(\Rightarrow\left(x+\dfrac{4}{5}\right)-\dfrac{1}{2}=0\) (chỉ có 1 TH vì số 0 ko phải dương or âm)
\(\left(x+\dfrac{4}{5}\right)=0+\dfrac{1}{2}=\dfrac{1}{2}\)
\(x=\dfrac{1}{2}-\dfrac{4}{5}=\dfrac{5-8}{10}=\dfrac{-3}{10}\)
c) \(3,6-|x-0,4|=0\)
\(\Rightarrow3,6-\left(x-0,4\right)=0\) ( giải thích giống câu b )
\(\Rightarrow-\left(x-0,4\right)=0-3,6\)
\(\Rightarrow-\left(x-0,4\right)=-3,6\)
\(\Rightarrow-x+0,4=-3,6\) ( Phá dấu )
\(\Rightarrow-x=-3,6-0,4=-3,6+\left(-0,4\right)=-4\)
\(\Rightarrow x=4\)
d) \(-\dfrac{5}{12}:|\dfrac{-5}{6}:x|=\dfrac{-5}{9}\)
\(\Rightarrow-\dfrac{5}{12}:|\dfrac{-5}{6}:x|=\dfrac{-5}{9}\)
hay \(\Rightarrow-\dfrac{5}{12}:|\dfrac{-5}{6}:x|=\dfrac{5}{9}\)
TH1 : \(-\dfrac{5}{12}:\left(-\dfrac{5}{6}:x\right)=\dfrac{-5}{9}\Rightarrow\left(-\dfrac{5}{6}:x\right)=-\dfrac{5}{12}:\left(-\dfrac{5}{9}\right)\)
\(\Rightarrow\left(-\dfrac{5}{6}:x\right)=\dfrac{5}{12}.\dfrac{9}{5}=\dfrac{9}{12}=\dfrac{3}{4}\)
\(\Rightarrow x=-\dfrac{5}{6}:\dfrac{3}{4}=-\dfrac{5.4}{6.3}=-\dfrac{5.2}{3.3}=-\dfrac{10}{9}\)
TH2 : \(\Rightarrow-\dfrac{5}{12}:\left(-\dfrac{5}{6}:x\right)=\dfrac{5}{9}\)
\(\Rightarrow\)\(\left(-\dfrac{5}{6}:x\right)=-\dfrac{5}{12}:\dfrac{5}{9}=-\dfrac{5.9}{12.5}=-\dfrac{9}{12}=-\dfrac{3}{4}\)
\(\Rightarrow x=-\dfrac{5}{6}:\left(-\dfrac{3}{4}\right)=\dfrac{5}{6}.\dfrac{4}{3}=\dfrac{10}{9}\)
Vậy x = ....
e)
Vì \(|x-3,5|\ge0;|4,5-x|\ge0\) với mọi x
Do đó : \(|x-3,5|+|4,5-x|=0\)
\(\Rightarrow|x-3,5|=0;|4,5-x|=0\)
\(\Rightarrow x-3,5=0\) và \(4,5-x=0\)
\(\Rightarrow x=0+3,5=3,5\) và \(-x=0+4,5=4,5\Rightarrow x=-4,5\)
( không đồng thời xảy ra)
\(\Rightarrow\) Không tồn tại x thuộc Q để \(|x-3,5|+|4,5-x|=0\)
a) \(2\left|2x-3\right|=\frac{1}{2}\)
\(\left|2x-3\right|=\frac{1}{2}:2\)
\(\left|2x-3\right|=\frac{1}{4}\)
\(\orbr{\begin{cases}2x-3=\frac{1}{4}\\2x-3=-\frac{1}{4}\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}2x=\frac{13}{4}\\2x=\frac{11}{4}\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=\frac{13}{8}\\x=\frac{11}{8}\end{cases}}\)
b)\(7,5-3\left|5-2x\right|=-4,5\)
\(3\left|5-2x\right|=12\)
\(\left|5-2x\right|=4\)
\(\orbr{\begin{cases}5-2x=4\\5-2x=-4\end{cases}}\Leftrightarrow\orbr{\begin{cases}2x=1\\2x=9\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=\frac{9}{2}\end{cases}}}\)
còn lại mk chịu