Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm cách giải
Trong hình vẽ đã có các cặp góc so le trong là A ^ và C 1 ^ ; E ^ và C 2 ^ . Muốn chứng tỏ AB // CD và CD // EF chỉ cần chứng tỏ A ^ = C 1 ^ và E ^ = C 2 ^ .
Trình bày lời giải
Ta có A C E ^ = C 1 ^ + C 2 ^ 2 ⇒ C 1 ^ + C 2 ^ = 2 A C E ^ .
Mặt khác C 1 ^ + C 2 ^ + A C E ^ = 360 ° nên 2 A C E ^ + A C E ^ = 360 ° ⇒ A C E ^ = 120 ° .
Do đó C 1 ^ + C 2 ^ = 360 ° − 120 ° = 240 ° mà C 1 ^ − C 2 ^ = 20 ° nên C 1 ^ = 130 ° ; C 2 ^ = 110 ° .
Ta có A C E ^ = A ^ + E ^ 2 ⇒ A ^ + E ^ = 2 A C E ^ = 240 ° .
Lại có A ^ − E ^ = 20 ° nên A ^ = 130 ° ; E ^ = 110 ° .
Ta có A ^ = C 1 ^ = 130 ° ⇒ A B / / C D ; E ^ = C 2 ^ = 110 ° ⇒ C D / / E F vì có cặp góc so le trong bằng nhau.
Vận dụng cặp góc đồng vị
\(\widehat{C1}=\widehat{CDb}\) (đồng vị)
\(\Rightarrow\widehat{CDb}=75^o\)
\(\widehat{C1}+\widehat{C2}=180^o\) (kề bù)
\(\Rightarrow\widehat{C2}=180^o-75^o=105^o\)
\(\widehat{BDC}=\widehat{C2}\) (so le trong)
\(\Rightarrow\widehat{BDC}=105^o\)
\(\widehat{ACD}=\widehat{C2}\) (đối đỉnh)
\(\Rightarrow\widehat{ACD}=105^o\)
a) Ta có: AC⊥AB,BD⊥AB
=> AC//BD
b) Ta có: AC//BD
\(\Rightarrow\widehat{C_1}=\widehat{D}=50^0\)(đồng vị)
Ta có: \(\widehat{C_2}=180^0-\widehat{C_1}=180^0-50^0=130^0\)(kề bù)
Ta có: \(\widehat{C_3}=\widehat{C_1}=50^0\)(đối đỉnh)
Đặt A C E ^ = m ° thì C 2 ^ = m ° + 10 ° và C 1 ^ = m ° + 20 ° .
Ta có A C E ^ + C 1 ^ + C 2 ^ = 360 ° do đó
m ° + m ° + 10 ° + m ° + 20 ° = 360 ° ⇒ 3 m ° + 30 ° = 360 ° ⇒ m ° = 110 ° .
Vậy C 2 ^ = 120 ° ; C 1 ^ = 130 ° .
Ta có A ^ + C 1 ^ = 50 ° + 130 ° = 180 ° ⇒ A B / / C D ; E ^ + C 2 ^ = 60 ° + 120 ° = 180 ° ⇒ C D / / E F ; vì có cặp góc trong cùng phía bù nhau.
Vận dụng nhiều dấu hiệu song song
Ta có: A 1 ^ = B 1 ^ (gt).
Þ a / / b (vì có cặp góc đồng vị bằng nhau).
Mặt khác, C 1 ^ + C 2 ^ = 180 o (kề bù)
mà C 1 ^ = C 2 ^ (gt) nên C 1 ^ = 180 o : 2 = 90 o .
Vậy m ⊥ a .