K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2019

a) \(6xy+4x-9y-7=0\)

  \(\Leftrightarrow2x.\left(3y+2\right)-9y-6-1=0\)

\(\Leftrightarrow2x.\left(3y+x\right)-3.\left(3y+2\right)=1\)

\(\Leftrightarrow\left(2x-3\right).\left(3y+2\right)=1\)

Mà \(x,y\in Z\Rightarrow2x-3;3y+2\in Z\)

Tự làm típ

4 tháng 5 2019

\(A=x^3+y^3+xy\)

\(A=\left(x+y\right)\left(x^2-xy+y^2\right)+xy\)

\(A=x^2-xy+y^2+xy\)( vì \(x+y=1\))

\(A=x^2+y^2\)

Áp dụng bất đẳng thức Bunhiakovxky ta có :

\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x\cdot1+y\cdot1\right)^2=\left(x+y\right)^2=1\)

\(\Leftrightarrow2\left(x^2+y^2\right)\ge1\)

\(\Leftrightarrow x^2+y^2\ge\frac{1}{2}\)

Hay \(x^3+y^3+xy\ge\frac{1}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)

5 tháng 11 2017

 Câu trả lời hay nhất:  trừu tượng. nếu không nguyên 
có lẽ là đề tìm điều kiện (x+y) thôi vì x+y không cố định 
đặt x+y=a=> y=a-x 
thay vào pt điều kiện 

2(x^2+1)+x^2=2(a-x)(x+1) 
3x^2+2 =2ax+2a-2x^2-2x 
5x^2+2x-2ax+2-2a=0 
5x^2+2(1-a)x+2(1-a)=0 
(1-a)^2-10(1-a)>=0 
(1-a)(1-a-10)>=0 
(a-1)(a+9)>=0 
a<=-9 
hoặc 
a>=1 

(x+y)<-9 hoặc (x+y)>=1

5 tháng 11 2017

ban kia lam dung roi do

k tui nha

thanks

27 tháng 9 2016

Bạn ơi bạn đề có x và y thuộc số tự nhiên không ?

27 tháng 9 2016

hỏi nhanh thế?

NV
16 tháng 2 2022

\(\left(x-y\right)^2\ge0;\forall xy\Rightarrow x^2+y^2\ge2xy\)

\(\Rightarrow\left(x+y\right)^2\ge4xy\Rightarrow x+y\ge2\sqrt{xy}\)

\(\dfrac{1}{2}=\dfrac{1}{x^2}+\dfrac{1}{y^2}\ge\dfrac{2}{xy}\Rightarrow xy\ge4\Rightarrow x+y\ge2\sqrt{xy}\ge2\sqrt{4}=4\)

\(C_{min}=4\) khi \(x=y=2\)

Hoặc là:

\(\dfrac{1}{2}=\dfrac{1}{x^2}+\dfrac{1}{y^2}\ge\dfrac{1}{2}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\ge\dfrac{1}{2}\left(\dfrac{4}{x+y}\right)^2=\dfrac{8}{\left(x+y\right)^2}\)

\(\Rightarrow\left(x+y\right)^2\ge16\Rightarrow x+y\ge4\)

NV
16 tháng 4 2022

\(P=\left(2x+\dfrac{1}{x}\right)^2+9+\left(2y+\dfrac{1}{y}\right)^2+9-18\)

\(P\ge2\sqrt{9\left(2x+\dfrac{1}{x}\right)^2}+2\sqrt{9\left(2y+\dfrac{1}{y}\right)^2}-18\)

\(P\ge12x+12y+\dfrac{6}{x}+\dfrac{6}{y}-18\)

\(P\ge6\left(4x+\dfrac{1}{x}\right)+6\left(4y+\dfrac{1}{y}\right)-12\left(x+y\right)-18\)

\(P\ge6.2\sqrt{\dfrac{4x}{x}}+6.2\sqrt{\dfrac{4y}{y}}-12.1-18=18\)

\(P_{min}=18\) khi \(x=y=\dfrac{1}{2}\)

30 tháng 6 2017

Áp dụng BĐT AM-GM ta có:

\(A=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)

\(\ge\frac{\left(x+\frac{1}{x}+y+\frac{1}{y}\right)^2}{2}\ge\frac{\left(x+y+\frac{4}{x+y}\right)^2}{2}\)

\(=\frac{\left(1+4\right)^2}{2}=\frac{5^2}{2}=\frac{25}{2}\)

Xảy ra khi \(x=y=\frac{1}{2}\)

26 tháng 7 2019

Có:

\(2x^2+1=y^2-yx^2\)

<=> \(x^2\left(y+2\right)=\left(y-1\right)\left(y+1\right)\)

=> \(x^2\left(y+2\right)⋮\left(y+1\right)\)mà y+1 và y+2 là hai số nguyên liên tiếp nên nguyên tố cùng nhau

=> \(x^2⋮\left(y+1\right)\)

Đặt: \(x^2=\left(y+1\right)t\)( t thuộc Z)

Ta có phương trình : \(t\left(y+2\right)=y-1\)

,+) Với y=-2 => y+2 =0 => y-1 =0 => y=1 vô lí

+) Với y khác -2

Chia ca hai vế cho y+2 ta có:

\(t=\frac{y-1}{y+2}=1-\frac{3}{y+2}\)

Tìm y để t thuộc Z

Ta có: y+2 thuộc U(3)={-3; -1; 1; 3}

+) y+2 =-3 => y=-5 => t=2 => x^2 =(y+1)t= -8 ( loại)

+) y+2 =-1 => y=-3 => t=2 => x^2 =(y+1)t= -4 ( loại)

+) y+2=1  => y=-1 => t=-2 => x^2= 0  => x=0 

+) y+2 =3 => y=1 => t=0 => x^2 =0  => x=0

THử lại thấy x=0; y=1 và x=0 ;y=-1 thỏa mãn

Vậy ...