K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2021

b, a=7, b=19

11 tháng 10 2021
Ê các cậu bao nhiêu đểm rồi tớ được 9 điểm môn Tiếng Việt còn toán tớ được 9 điểm các môn học này chào các bạn nhé tớ chỉ hỏi các cậu bao nhiêu điểm thôi mà nhé chào các bạn nhé
4 tháng 4 2016

Đặt \(\sqrt{x^2+2y+1}\) =a thì phương trình trở thành a2 -1 +a =1 giải ra được a=1 hoặc a=-2

mà a > 0 suy ra a=1 suy ra x2 +2y =0 mà 2x + y =2 suy ra x- 4x -4 =0 suy ra x=2 y= -2

x02 + y02 = 8

4 tháng 4 2016

=8 nha chi

3 tháng 11 2016

Ta có : \(\frac{9}{4}=\left(1+a\right)\left(1+b\right)\le\frac{1}{4}\left(a+b+2\right)^2\)

\(\Leftrightarrow\left(a+b+2\right)^2\ge9\Leftrightarrow a+b+2\ge3\Leftrightarrow a+b\ge1\)

Áp dụng BĐT Mincopxki , ta có : \(\sqrt{1+a^4}+\sqrt{1+b^4}\ge\sqrt{\left(1^2+1^2\right)^2+\left(a^2+b^2\right)^2}\ge\sqrt{4+\frac{1}{4}\left(a+b\right)^4}\ge\sqrt{\frac{17}{4}}\)

Đẳng thức xảy ra khi \(a=b=\frac{1}{2}\)

Vậy minP = \(\frac{\sqrt{17}}{2}\Leftrightarrow a=b=\frac{1}{2}\)

3 tháng 11 2016

\(\left(1+a\right)\left(1+b\right)=\frac{9}{4}\)

\(\Leftrightarrow1+a+b+ab=\frac{9}{4}\Leftrightarrow a+b+ab=\frac{5}{4}\)

Áp dụng Bđt Cô si ta có: \(a^2+b^2\ge2ab\)

\(2\left(a^2+\frac{1}{4}\right)\ge2a;2\left(b^2+\frac{1}{4}\right)\ge2b\)

\(\Rightarrow3\left(a^2+b^2\right)+1\ge2\left(a+b+ab\right)=\frac{5}{2}\)

\(\Leftrightarrow a^2+b^2\ge\frac{1}{2}\)

Áp dụng Bđt Bunhiacopski ta cũng có:

\(P\ge\sqrt{\left(1+1\right)^2+\left(a^2+b^2\right)^2}\ge\sqrt{4+\frac{1}{4}}=\frac{\sqrt{17}}{2}\)

Dấu = khi \(x=y=\frac{1}{2}\)

NM
3 tháng 9 2021

ta có 

\(C=444..4000..0+888..8+1=4.10^n\left(1+10+..+10^{n-1}\right)+8.\left(1+10+..+10^{n-1}\right)+1\)

\(=4.10^n\frac{10^n-1}{9}+8\frac{10^n-1}{9}+1=\frac{4.10^{2n}+4.10^n+1}{9}=\left(\frac{2.10^n+1}{3}\right)^2\)

rõ ràng C là số tự nhiên nên \(\frac{2.10^n+1}{3}\) là số tự nhiên, vậy ta có đpcm

3 tháng 9 2021

minh quang ơi bạn giải thích chi tiết ra đc không

NM
1 tháng 9 2021

ta có :

\(ab>2016a+2017b\Rightarrow a\left(b-2016\right)>2017b\) hay ta có : \(a>\frac{2017b}{b-2016}\)

Vậy \(a+b>\frac{2017b}{b-2016}+b=b+2017+\frac{2016\times2017}{b-2106}=b-2016+\frac{2016\times2017}{b-2106}+2016+2017\)

\(\ge2\sqrt{2016\times2017}+2016+2017=\left(\sqrt{2016}+\sqrt{2017}\right)^2\)

Vậy ta có đpcm

Nhận thấy n=2 thỏa mãn điều kiện

Với n>2 ta có: 

\(n^6-1=\left(n^3-1\right)\left(n^3+1\right)=\left(n^3-1\right)\left(n+1\right)\left(n^2-n+1\right)\)

Do đó tất cả các thừa số nguyên tố của \(n^2-n-1\)chia hết cho \(n^3-1\)hoặc \(n^2-1=\left(n-1\right)\left(n+1\right)\)

Để ý rằng \(\left(n^2-n+1;n^3-1\right)\le\left(n^3+1;n^3-1\right)\le2\)

Mặt khác \(n^2-n+1=n\left(n-1\right)+1\)là số lẻ, do đó tất cả các thừa số nguyên tố của \(n^2-n-1\)chia hết cho \(n+1\)

Nhưng \(n^2-n+1=\left(n+1\right)\left(n-2\right)+3\)

Vì vậy ta phải có \(n^2-n+1=3^k\left(k\in Z^+\right)\)

Vì \(n>2\Rightarrow k\ge2\)

do đó \(3|n^2-n+1\Rightarrow n\equiv2\left(mod3\right)\)

Nhưng mỗi TH \(n\equiv2,5,8\left(mod9\right)\Rightarrow n^2-n+1\equiv3\left(mod9\right)\)(mâu thuẫn)

Vậy n=2

4 tháng 3 2020

Bài làm rất hay mặc dù làm rất tắt.

Tuy nhiên:

Dòng thứ 4: Ước số nguyên tố của \(n^2-n+1\)chia hết cho \(n^3-1\)hoặc \(n^2-1\)( em viết thế này không đúng rồi )

------> Sửa: ước số nguyên tố của \(n^2-n+1\) chia hết \(n^3-1\) hoặc  \(n^2-1\)

Hoặc:  ước số nguyên tố của \(n^2-n+1\) là ước  \(n^3-1\) hoặc  \(n^2-1\)

Dòng thứ 6 cũng như vậy:

a chia hết b khác hoàn toàn a chia hết cho b 

a chia hết b nghĩa là a là ước của b ( a |b)

a chia hết cho b nghĩa là b là ước của a.( \(a⋮b\))

3 dòng cuối cô không hiểu  em giải thích rõ giúp cô với. Please!!!!

Nhưng cô có cách khác dễ hiểu hơn này:

\(n^2-n+1=3^k\);

 \(n+1⋮3\)=> tồn tại m để : n + 1 = 3m

=> \(\left(n+1\right)\left(n-2\right)+3=3^k\)

<=>\(3m\left(n+1-3\right)+3=3^k\)

<=> \(m\left(n+1\right)-3m+1=3^{k-1}\)

=> \(m\left(n+1\right)-3m+1⋮3\)

=> \(1⋮3\)vô lí

DD
24 tháng 8 2021

Gọi ba số đó là \(a,b,c\)(\(a,b,c\inℕ^∗\))

\(a+b+c=100\)

\(P=abc\).

Dễ thấy GTNN của \(P\)đạt tại hai số bằng \(1\), một số bằng \(98\).

\(minP=98\)khi \(\left(a,b,c\right)=\left(1,1,98\right)\)và các hoán vị. 

Giờ ta sẽ tìm GTLN của \(P\).

Giả sử \(a\ge b\ge c\).

Ta có nhận xét rằng \(P\)đặt giá trị lớn nhất khi hai trong ba số trên có hiệu không vượt quá \(1\).

Giả sử \(a-b>1\).

Khi đó thay \(a\)bởi \(a-1\)\(b\)bởi \(b+1\)ta có: 

\(c\left(a-1\right)\left(b+1\right)=c\left(ab+a-b-1\right)>cab\)

Do đó \(P\)đạt GTLN khi \(a\ge b\ge c\)\(a-c\le1\)

Kết hợp với \(a+b+c=100\)suy ra \(P\)đạt max tại \(a=34,b=c=33\).

Khi đó \(maxP=34.33^2\).

Dấu \(=\)khi \(\left(a,b,c\right)=\left(34,33,33\right)\)và các hoán vị. 

24 tháng 8 2021

(34,33,33) và các hoán vị

24 tháng 8 2021

gọi 3 số đó là a,b,c

a+b+c=100

theo bdt cosi: a+b+c>=\(3\sqrt[3]{abc}\)

\(\Leftrightarrow100\ge3\sqrt[3]{abc}\Leftrightarrow\frac{1000000}{27}\ge abc\)

vậy abc đạt gtln là 1000000/27 hay tích 3 số đó có GTLN là 1000000/27

24 tháng 8 2021
An U buffo x cm id so go

undefined

2
DD
20 tháng 8 2021

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{abc}=1\)

\(\Leftrightarrow ab+bc+ca+1=abc\)

Nếu \(a,b,c\)đều là số lẻ thì \(VT\)là số chẵn, \(VP\)là số lẻ (mâu thuẫn) 

Do đó có một trong ba số là số chẵn. 

Giả sử \(c=2\): xét \(a\ge b>2\)

\(ab+2a+2b+1=2ab\)

\(\Leftrightarrow ab-2a-2b-1=0\)

\(\Leftrightarrow\left(a-2\right)\left(b-2\right)=5=1.5\)

\(\Rightarrow\hept{\begin{cases}a-2=5\\b-2=1\end{cases}}\Leftrightarrow\hept{\begin{cases}a=7\\b=3\end{cases}}\)

Vậy \(\left(a,b,c\right)=\left(7,3,2\right)\)và các hoán vị. 

24 tháng 8 2021

(7,3,2 các hoán đơn vị

19 tháng 8 2021

a) Ta có: sin30=cos60, sin50=cos40

    Mà cos30 < cos38 < cos40 < cos60 < cos80

    Nên cos30 < cos38 < sin50 < sin30 < cos80

b) Ta có: tan75=cot15, tan63=cot27 => cot11 < tan75 < cot20 < tan63 (1)

         và: sin49=cos41 => cos30 < sin49 (2)

    Lại có: cot11=tan69 > tan49= sin49:cos49 > sin49 (do cos49<1) (3)

    Từ (1), (2) và (3) suy ra: cos30 < sin49 < cot11 < tan75 < cot20 < tan63

   

    

25 tháng 8 2021

TA CÓ   \(\sin30\)\(\cos60\)

             \(\sin50=\cos40\)

---->>  \(\cos30< \cos38< \cos40< \cos60< \cos80\)

------>> \(\cos30< \cos38< \sin50< \sin60< \cos80\)

Cái kia làm tương tự nhoa

Bạn xin 1 cái k