K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 5 2023

a. Vì \(0< 0,1< 1\) nên bất phương trình đã cho 

\(\Leftrightarrow0< x^2+x-2< x+3\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+x-2>0\\x^2-5< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x< -2\\x>1\end{matrix}\right.\\-\sqrt{5}< x< \sqrt{5}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-\sqrt{5}< x< -2\\1< x< \sqrt{5}\end{matrix}\right.\)

Vậy tập nghiệm của bất phương trình là \(S=\left\{-\sqrt{5};-2\right\}\) và \(\left\{1;\sqrt{5}\right\}\)

b. Điều kiện \(\left\{{}\begin{matrix}2-x>0\\x^2-6x+5>0\end{matrix}\right.\)

Ta có:

 \(log_{\dfrac{1}{3}}\left(x^2-6x+5\right)+2log^3\left(2-x\right)\ge0\)

\(\Leftrightarrow log_{\dfrac{1}{3}}\left(x^2-6x+5\right)\ge log_{\dfrac{1}{3}}\left(2-x\right)^2\)

\(\Leftrightarrow x^2-6x+5\le\left(2-x\right)^2\)

\(\Leftrightarrow2x-1\ge0\)

Bất phương trình tương đương với:

\(\left\{{}\begin{matrix}x^2-6x+5>0\\2-x>0\\2x-1\ge0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x< 1\\x>5\end{matrix}\right.\\x< 2\\x\ge\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\dfrac{1}{2}\le x< 1\)

Vậy tập nghiệm của bất phương trình là: \(\left(\dfrac{1}{2};1\right)\)

NV
3 tháng 6 2019

Lấy tích phân 2 vế giả thiết:

\(\int\limits^1_0\left(f'\left(x\right)\right)^2dx+4\int\limits^1_0f\left(x\right)dx=\int\limits^1_0\left(8x^2+4\right)dx=\frac{20}{3}\)

Xét \(I=\int\limits^1_0f\left(x\right)dx\)

Đặt \(\left\{{}\begin{matrix}u=f\left(x\right)\\dv=dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=f'\left(x\right)dx\\v=x\end{matrix}\right.\)

\(\Rightarrow I=x.f\left(x\right)|^1_0-\int\limits^1_0x.f'\left(x\right)dx=2-\int\limits^1_0x.f'\left(x\right)dx\)

\(\Rightarrow\int\limits^1_0\left[f'\left(x\right)\right]^2dx+8-4\int\limits^1_0x.f'\left(x\right)dx=\frac{20}{3}\)

\(\Leftrightarrow\int\limits^1_0\left[f'\left(x\right)\right]^2dx-2\int\limits^1_02x.f'\left(x\right)dx+\int\limits^1_04x^2dx=\frac{20}{3}-8+\int\limits^1_04x^2dx=0\)

\(\Leftrightarrow\int\limits^1_0\left[\left[f'\left(x\right)\right]^2-2.2x.f'\left(x\right)+4x^2\right]dx=0\)

\(\Leftrightarrow\int\limits^1_0\left[f'\left(x\right)-2x\right]^2dx=0\Rightarrow f'\left(x\right)=2x\)

\(\Rightarrow f\left(x\right)=x^2+C\)

Do \(f\left(1\right)=2\Rightarrow2=1+C\Rightarrow C=1\)

\(\Rightarrow f\left(x\right)=x^2+1\Rightarrow\int\limits^1_0f\left(x\right)dx=\int\limits^1_0\left(x^2+1\right)dx=\frac{4}{3}\)

4 tháng 6 2019

dap an bai kia la gi vay ban

AH
Akai Haruma
Giáo viên
31 tháng 5 2019

Lời giải:

\(f'(x)=f'(x-1); dx=d(x-1)\)

\(\Rightarrow f'(x)dx=f'(x-1)d(x-1)\)

\(\Rightarrow \int f'(x)dx=\int f'(x-1)d(x-1)\)

\(\Rightarrow f(x)=f(x-1)+c\)

Thay $x=1$ ta có \(f(1)=f(0)+c\Leftrightarrow 2019=1+c\Rightarrow c=2018\)

Khi đó: $f(x)=f(x-1)+2018$

\(f(0)=1=1+2018.0\)

\(f(1)=1+2018.1\)

\(f(2)=f(1)+2018=1+2018.1+2018=1+2018.2\)

.........

\(\Rightarrow f(x)=1+2018.x\)

Do đó: \(\int ^{1}_{0}f(x)dx=\int ^{1}_{0}(2018x+1)dx=\left.\begin{matrix} 1\\ 0\end{matrix}\right|(1009x^2+x)=1010\)

13 tháng 8 2019

22 tháng 2 2020

câu B

a: =>10x=25

hay x=2,5

b: =>3x=7,65-3,15=4,5

hay x=1,5

22 tháng 5 2021

b.7/3

22 tháng 5 2021

BBBBBB.7/3hehe

3 tháng 3 2019

=3 nha bn

3 tháng 3 2019

đáp án 3

21 tháng 1 2019

Chọn D