Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x^2-6x+9=x^2-2.3.x+3^2=\left(x-3\right)^2\)
b)\(x^2+4x+4=x^2+2.2.x+2^2=\left(x+2\right)^2\)
c)\(4x^2+4x+1=\left(2x\right)^2+2.2x.1+1^2=\left(2x+1\right)^2\)
d)\(4x^2+12xy+9y^2=\left(2x\right)^2+2.2x.3y+\left(3y\right)^2=\left(2x+3y\right)^2\)
e)\(x^2-8x+16=x^2-2.4.x+4^2=\left(x-4\right)^2\)
a) x2 -6x +9 = (x-3)2
b) x2+4x +4= (x+2)2
c) 4x2+4x+1= (2x+1)2
d) 4x2+12xy+9y2 = (2x+3y)2
e) x2-8x+16 = (x-4)2
Đây chính là hằng đẳng thức nhé bn....
a) \(x^2-6x+9=x^2-2\cdot x\cdot3+3^2=\left(x-3\right)^2\)
b) \(4x^2-12xy+9y^2=\left(2x\right)^2-2\cdot2x\cdot3y+\left(3y\right)^2=\left(2x-3y\right)^2\)
c) \(4x^2-2x+1=\left(2x-1\right)^2\)
d) \(x^2+8xy+16y^2=\left(x+4y\right)^2\)
a) \(x^2+6x+9=x^2+2.3x+3^2=\left(x+3\right)^2\)
b) \(x^2+x=\text{ }\left[x^2+2.\frac{1}{2}x+\left(\frac{1}{2}\right)^2\right]-\left(\frac{1}{2}\right)^2=\left(x+\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2\)
c) \(2xy^2+x^2y^4=\left[\left(xy^2\right)^2+2.xy^2+1^2\right]-1^2=\left(xy^2+1\right)^2-1^2\)
a ) Ta có : -x3 + 3x2 - 3x + 1
= 1 - 3x + 3x2 - x3
= (1 - x)3
b) Ta có : 8 - 12x + 6x2 - x3
= 23 - 3.22.x + 3.2.x2 - x3
= (2 - x)3
a, -x3 + 3x2 - 3x + 1
= -x3 + 3.x2.1 - 3.x.12 + 13
= ( -x + 1 )3
1) Viết biểu thức sau dưới dạng hiệu 2 bình phương:
a)4x2+6x+7-y2-6y
b)x2+y2-4x-6y+13
c)4x2-12x-y2+2y+8
b) \(x^2+y^2-4x-6y+13\)
\(=\left(x^2-4x+4\right)+\left(y^2-6y+9\right)\)
\(=\left(x-2\right)^2+\left(y-3\right)^2\)
c) \(4x^2-12x-y^2+2y+8\)
\(=\left(4x^2-12x+9\right)-\left(y^2-2y+1\right)\)
\(=\left(2x-3\right)^2-\left(y-1\right)^2\)
\(x^2+y^2-4x-6y+13\)
\(=\left(x^2-4x+4\right)+\left(y^2-6y+9\right)\)
\(=\left(x-2\right)^2+\left(y-3\right)^2\)
hk
\(x^2+y^2-4x-6y+13\)
\(=\left(x^2-4x+4\right)+\left(y^2-6y+9\right)\)
\(=\left(x-2\right)^2+\left(y-3\right)^2\)
hk tốt
\(\left(x+y+4\right)\left(x+y-4\right)=\) \(\left(x+y\right)^2-4^2\)
\(x^2+y^2-4x-6y+13\)
\(=\left(x^2-4x+4\right)+\left(y^2-6y+9\right)\)
\(=\left(x-2\right)^2+\left(y-3\right)^2\)
hk tốt
a/ 9x2-12xy+4y2 = (3x - 2y)2
b/ 25x2-10x+1 = (5x - 1)2
c/ 9x2-12x+4 = (3x - 2)2
d/ 4x2+20x+25 = (2x + 5)2
e/ x4-4x2+4 = (x2 - 2)2
Bài 1:
b) \(16x^2-8x+1=\left(4x-1\right)^2\)
c) \(\left(x+3\right)\left(x+4\right)\left(x+5\right)\left(x+6\right)+1\)
\(=\left[\left(x+3\right)\left(x+6\right)\right]\left[\left(x+4\right)\left(x+5\right)\right]+1\)
\(=\left(x^2+9x+18\right)\left(x^2+9x+20\right)+1\)
Đật \(x^2+9x+19=t\) , pt trở thành
\(\left(t-1\right)\left(t+1\right)+1=t^2-1+1=t^2=\left(x^2+9x+19\right)^2\)
d) \(x^2+y^2+2x+2y+2\left(x+1\right)\left(y+1\right)+2\)
\(=\left(x^2+2x+1\right)+2\left(x+1\right)\left(y+1\right)+\left(y^2+2y+1\right)\)
\(=\left(x+1\right)^2+2\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2\)
\(=\left(x+1+y+1\right)^2=\left(x+y+2\right)^2\)
e) \(x^2-2x\left(y+2\right)+y^2+4y+4\)
\(=x^2-2x\left(y+2\right)+\left(y+2\right)^2\)
\(=\left[x-\left(y+2\right)\right]^2=\left(x-y-2\right)^2\)
a)_ Sai đề
N = (x2 - 4x - 5)(x2 - 4x - 19) + 49
Đặt x2 - 4x - 5 = t, ta có:
t(t - 14) + 49
t2 - 14t + 49
= (t - 7)2
= (x2 - 4x - 12)2
= (x2 - 6x + 2x - 12)2
= [x(x - 6) + 2(x - 6)]2
= [(x + 2)(x - 6)]2
[(x + 2)(x - 6)]2 lớn hơn hoặc bằng 0
Vậy Min N = 0 khi x = - 2 hoặc x = 6.
T = x2 - 6x + y2 - 2y + 12
= x2 - 2 . x . 3 + 9 + y2 - 2 . y . 1 + 1 + 2
= (x - 3)2 + (y - 1)2 + 2
(x - 3)2 lớn hơn hoặc bằng 0
(y - 1) lớn hơn hoặc bằng 0
(x - 3)2 + (y - 1)2 + 2 lớn hơn hoặc bằng 2
Vậy Min T = 2 khi x = 3 và y = 1.
Chúc bạn học tốt ^^
a) \(4x^2+6x+15=\left(2x\right)^2+2.2x.1,5+2.25+12.75=\left(2x+1.5\right)^2+12.75\)
b \(x^2-5x+10=x^2-2.2,5x+6.25+3.75=\left(x-2.5\right)^2+3.75\)
a) \(4x^2+6x+15\)
\(=\left(2x\right)^2+2.2x.\frac{3}{2}+\frac{9}{4}-\frac{9}{4}+15\)
\(=\left(2x+\frac{3}{2}\right)^2+\frac{27}{2}\)
b) \(x^2-5x+10\)
\(=x^2-2.x.\frac{5}{2}+\frac{25}{4}-\frac{25}{4}+10\)
\(=\left(x-\frac{5}{2}\right)^2+\frac{15}{4}\)