Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(1-\frac{1}{2}.\left(\frac{3}{2}-2x\right)=4x-\frac{1}{4}\)
\(-4x+\frac{3}{4}+x=1+\frac{1}{4}\)
\(-3x=\frac{4}{4}+\frac{1}{4}-\frac{3}{4}\)
\(-3x=\frac{1}{2}\)
\(x=\frac{-1}{6}\)
vay \(x=\frac{-1}{6}\)
b) \(x^{10}=1024\)
\(x^{10}=2^{10}\)
\(\Rightarrow x=2\)
vay \(x=2\)
c) \(3^x=81\)
\(3^x=3^4\)
\(\Rightarrow x=4\)
vay \(x=4\)
Bài 1:
\(\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{6}\right|+...+\left|x+\frac{1}{101}\right|=101x\)
Ta thấy:
\(VT\ge0\Rightarrow VP\ge0\Rightarrow101x\ge0\Rightarrow x\ge0\)
\(\Rightarrow\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{6}\right)+...+\left(x+\frac{1}{101}\right)=101x\)
\(\Rightarrow\left(x+x+...+x\right)+\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{101}\right)=0\)
\(\Rightarrow10x+\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{10.11}\right)=0\)
\(\Rightarrow10x+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{10}-\frac{1}{11}\right)=0\)
\(\Rightarrow10x+\left(1-\frac{1}{11}\right)=0\)
\(\Rightarrow10x+\frac{10}{11}=0\)
\(\Rightarrow10x=-\frac{10}{11}\Rightarrow x=-\frac{1}{11}\)(loại,vì x\(\ge\)0)
Bài 2:
Ta thấy: \(\begin{cases}\left(2x+1\right)^{2008}\ge0\\\left(y-\frac{2}{5}\right)^{2008}\ge0\\\left|x+y+z\right|\ge0\end{cases}\)
\(\Rightarrow\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|\ge0\)
Mà \(\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|=0\)
\(\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|=0\)
\(\Rightarrow\begin{cases}\left(2x+1\right)^{2008}=0\\\left(y-\frac{2}{5}\right)^{2008}=0\\\left|x+y+z\right|=0\end{cases}\)\(\Rightarrow\begin{cases}2x+1=0\\y-\frac{2}{5}=0\\x+y+z=0\end{cases}\)
\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\x+y+z=0\end{cases}\)\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\-\frac{1}{2}+\frac{2}{5}+z=0\end{cases}\)
\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\-\frac{1}{10}=-z\end{cases}\)\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\z=\frac{1}{10}\end{cases}\)
Có: 1024=2^10
=> 2.2^2.2^3......2^x=2^10
=> 1+2+3+...+x=10
1+2+3+...+x=1+2+3+4
=>x=4
Vậy x=4
1)A(x)=-3x+6=0
=-3x=-6
x=2
Vậy ...
2)x2-x=0
=>x2=x
=>x=0 hoặc 1
Vậy ...
3)x2+3x=0
=>x2=-3x
=>x=-3 (chia cả hai vế cho x)
4)x2 lớn hơn hoặc bằng 0
=>x2 +1 khác 0
=> đa thức D(x)=x2+1 vô nghiêm
Vây ...
Có A (x)= -3x + 6
\(\Rightarrow\)-3x + 6 = 0
-3x = - 6
x =2
Vậy x= 2 là nghiệm của đa thức A (x)
Có B (x)= \(x^2-x\)
\(\Rightarrow x^2-x=0\)
x( x - 1) = 0
\(\Rightarrow\)x = 0 hoặc x - 1 = 0
x = 1
Vậy x = 0 và x= 1 là nghiệm của đa thức B( x)
Có C (x) = \(x^2+3x\)
\(\Rightarrow\)\(x^2+3=0\)
x( x + 3 ) = 0
Và bạn làm như đa thức B(x)
Có D(x) = \(x^2+1\)
=> x2 + 1 = 0
x2 = -1
mà \(x^2\ne1\) nên đa thức D(x) không có nghiệm
\(P=\frac{x-2}{x+1}=\frac{\cdot\left(x+1\right)-3}{x+1}=\frac{x+1}{x+1}-\frac{3}{x+1}=1-\frac{3}{x+1}\)
Để \(P=1-\frac{3}{x+1}\) là số nguyên <=> \(\frac{3}{x+1}\) là số nguyên
=> x + 1 thuộc ước của 3 là - 3; - 1; 1 ; 3
=> x + 1 = { - 3; - 1; 1 ; 3 }
=> x = { - 4 ; - 2 ; 0 ; 2 }
A ...=>\(\hept{\begin{cases}-x>0\\x+5>0\end{cases}}=>\hept{\begin{cases}x< 0\\x>-5\end{cases}}\)
=>-5<x<0
Vậy -5<x<0
B TH1:x+1>0=>\(\hept{\begin{cases}\text{x}+1\backslash=x+1\\x>-1\end{cases}}\)
=>x+1=x+1
=>x vô hạn và x>-1
TH2:x+1<0=>\(\hept{\begin{cases}\backslash x+1\backslash=-\left(x+1\right)\\x< -1\end{cases}}\)
=>x+1=-(x+1)
x+1=-x-1
x+x=-1-1
2x=-2
x=-1(Loại ko TM đk)
Vậy x vô hạn và x>-1
C làm tương tự câu B
2m - 2n = 256 = 28 \(\Rightarrow\)2n . ( 2m-n - 1 ) = 28
dễ thấy m \(\ne\)n , ta xét 2 trường hợp :
a) nếu m - n = 1 thì từ ( 1 ) ta có : 2n . ( 2 - 1 ) = 28 . suy ra : n = 8, m = 9
b) nếu m - n \(\ge\)2 thì 2m-n - 1 là 1 số lẻ lớn hơn 1 nên vế trái của ( 1 ) chứa thừa số nguyên tố lẻ khi phân tích ra thừa số nguyên tố. còn vế phải của ( 1 ) chỉ chứa thừa số nguyên tố 2. Mâu thuẫn
Vậy n = 8 , m = 9 là đáp số bài trên
đặt A = \(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{3^4}+...+\frac{99}{3^{99}}+\frac{100}{3^{100}}\)
3A = \(1+\frac{2}{3}+\frac{3}{3^2}+\frac{4}{3^3}+...+\frac{99}{3^{98}}+\frac{100}{3^{99}}\)
3A - A = 2A = \(1+\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{98}}+\frac{1}{3^{99}}\right)-\frac{100}{3^{100}}\)
biểu thức trong dấu ngoặc nhỏ hơn \(\frac{1}{2}\)( tự chứng minh ) nên 2A < 1 + \(\frac{1}{2}\)
\(\Rightarrow A< \frac{3}{4}\)
1.
Theo bài ra ta có:
\(\frac{x}{2}=\frac{y}{3},\frac{y}{4}=\frac{z}{5}\) và x + y - z = 10
Ta có:
\(\frac{x}{8}=\frac{y}{12},\frac{y}{12}=\frac{z}{15}\)
\(\Rightarrow\)\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)
Suy ra:
x = 2 . 8 = 16
y = 2 . 12 = 24
z = 2 . 15 = 30
2/
Đặt \(\frac{x}{2}=\frac{y}{5}=k\)
Ta có :x = 2k ; y = 5k
=>x . y = 2k . 5k = 10k2 = 10 => k2 = 1 => k = ±1
Thay k = 1 ta có : x = 2 . 1 = 2 ; y = 5 . 1 = 5
Thay k = -1 ta có : x = 2 . (-1) = -2 ; y = 5 . (-1) = -5
Vậy x = ±2 ; y = ±5
3/
Giải:
Gọi số học sinh khối 6,7,8,9 lần lượt là a,b,c,d .
Theo bài ra ta có:
\(\frac{a}{9}=\frac{b}{8}=\frac{c}{7}=\frac{d}{6}\) và b - d = 70
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{a}{9}=\frac{b}{8}=\frac{c}{7}=\frac{d}{6}=\frac{b-d}{8-6}=\frac{70}{2}=35\)
Suy ra :
a = 35 . 9 = 315
b = 35 . 8 = 280
c = 35 . 7 = 245
d = 35 . 6 = 210
Vậy số học sinh khối 6,7,8,9 lần lượt là 315;280;245;210 .
\(2^{1+2+3+...+x}=2014\)
\(1+2+3+...+x=10\)
x=4