Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
ĐKXĐ:.............
Phương trình hoành độ giao điểm của \((d)\cap (C)\):
\(2(x-m)-\frac{2x-m}{mx+1}=0\Leftrightarrow m(2x^2-2mx-1)=0\)
Nếu \(m=0\Rightarrow (d)\equiv C\) (vô lý) nên $m\neq 0$ . Do đó \(2x^2-2mx-1=0\). $(1)$
Hai điểm $A,B$ có hoành độ chính là nghiệm của phương trình $(1)$
Áp dụng định lý Viet: \(\left\{\begin{matrix} x_1+x_2=m\\ x_1x_2=\frac{-1}{2}\end{matrix}\right.\)
\(d(O,AB)=\frac{|-2m|}{\sqrt{5}}\); \(AB=\sqrt{(x_1-x_)^2+(y_1-y_2)^2}=\sqrt{5(m^2+2)}\)
\(\Rightarrow S_{OAB}=\frac{d(O,AB).AB}{2}=|m|\sqrt{m^2+2}\)
Mặt khác, dễ dàng tính được \(M(m,0),N(0,-2m)\) nên \(S_{OMN}=\frac{OM.ON}{2}=\frac{|m||-2m|}{2}=m^2\)
Ta có \(S_{OAB}=3S_{OMN}\Leftrightarrow |m|\sqrt{m^2+2}=3m^2\)
\(\Rightarrow m=\pm \frac{1}{2}(m\neq 0)\)
Bài 2:
Ta có \(A(1,0,1)\in (d_1);B(3,5,4)\in (d_2); \overrightarrow{u_{d_1}}=(-1,1,1);\overrightarrow{u_{d_2}}=(4,-2,1)\)
Dễ thấy \([\overrightarrow{u_{d_1}},\overrightarrow{u_{d_2}}]\overrightarrow{AB}\neq 0\) nên suy ra $(d_1)$ và $(d_2)$ chéo nhau
Gọi \(\overrightarrow{n_P}\) là vector pháp tuyến của mặt phẳng $(P)$
Khi đó \(\overrightarrow{n_P}=[\overrightarrow{u_{d_1}},\overrightarrow{u_{d_2}}]=(3,5,-2)\)
Vì $(P)$ đi qua $(d_1)$ nên $(P)$ đi qua $A$. Do đó PTMP là:
\(3(x-1)+5y-2(z-1)=0\Leftrightarrow 3x+5y-2z-1=0\)
6.
d nhận \(\left(2;-1;-3\right)\) là 1 vtcp
7.
Phương trình mặt phẳng (P) qua A và vuông góc d nhận \(\left(3;2;-1\right)\) là 1 vtpt có dạng:
\(3\left(x-4\right)+2\left(y+3\right)-1\left(z-2\right)=0\)
\(\Leftrightarrow3x+2y-z-4=0\)
Pt tham số d: \(\left\{{}\begin{matrix}x=-2+3t\\y=-2+2t\\z=-t\end{matrix}\right.\)
A' là giao điểm d và (P) nên tọa độ thỏa mãn:
\(3\left(-2+3t\right)+2\left(-2+2t\right)+t-4=0\Rightarrow t=1\)
\(\Rightarrow A'\left(1;0;-1\right)\)
8.
Tọa độ H là \(H\left(0;2;0\right)\) (giữ tung độ, thay hoành độ và cao độ bằng 0 là xong)
4.
\(\left(1+e^x\right)x=\left(1+e\right)x\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
Diện tích:
\(S=\int\limits^1_0\left[\left(1+e\right)x-\left(1+e^x\right)x\right]dx\)
\(=\int\limits^1_0e.xdx-\int\limits^1_0x.e^xdx\)
\(=\left(\frac{1}{2}e.x^2-\left(x-1\right)e^x\right)|^1_0=\frac{e}{2}-1=\frac{e-2}{2}\)
5.
Do 3 điểm A;B;C lần lượt thuộc 3 trục tọa độ nên mặt cầu đi qua 4 điểm có tâm \(I\left(\frac{1}{2};-1;2\right)\)
\(R=IA=\sqrt{\left(\frac{1}{2}\right)^2+\left(-1\right)^2+2^2}=\frac{\sqrt{21}}{2}\)
Phương trình:
\(\left(x-\frac{1}{2}\right)^2+\left(y+1\right)^2+\left(z-2\right)^2=\frac{21}{4}\)
Lời giải:
Chọn điểm $I$ sao cho \(\overrightarrow{IA}-2\overrightarrow{IB}=0\)
\(\Leftrightarrow (1-x_I, 2-y_I, 1-z_I)-2(2-x_I, -1-y_I, 3-z_I)=0\)
\(\Rightarrow \left\{\begin{matrix} 1-x_I-2(2-x_I)=0\\ 2-y_I-2(-1-y_I)=0\\ 1-z_I-2(3-z_I)=0\end{matrix}\right.\Rightarrow I(3,-4, 5)\)
Có:
\(MA^2-2MB^2=(\overrightarrow {MI}+\overrightarrow{IA})^2-2(\overrightarrow{MI}+\overrightarrow{IB})^2\)
\(=-MI^2+IA^2-2IB^2+2\overrightarrow{MI}(\overrightarrow{IA}-2\overrightarrow{IB})\)
\(=-MI^2+IA^2-2IB^2\)
Do đó để \(MA^2-2MB^2\) max thì \(MI^2\) min. Do đó $M$ là hình chiếu vuông góc của $I$ xuống mặt phẳng $Oxy$
Gọi d là đường thẳng đi qua $I$ và vuông góc với (Oxy)
Khi đó: \(d:\left\{\begin{matrix} x=3\\ y=-4\\ z=5+t\end{matrix}\right.\)
$M$ thuộc d và $(Oxy)$ thì ta có thể suy ra ngay đáp án D
a) Gọi \(\overrightarrow{u}\left(1;-2;-1\right)\) là vectơ chỉ phương của d, giả sử \(\overrightarrow{v}\left(a;b;c\right)\) là
Do \(\Delta\) đi qua A và vuông góc với d nên \(\Delta\) phải nằm trong mặt phẳng (P) đi qua A và vuông góc với d.
Mặt phẳng (P) nhận vecto \(\overrightarrow{u}=\left(2;-1;4\right)\) của d làm vecto pháp tuyến, đi qua A(-4;-2;4) có phương trình : \(2x-y+4z-10=0\)
Gọi M là giao điểm của d và (P) thì M(-3+2t;1-t;-1+4t) thuộc d và M thuộc \(\Delta\)
Câu 1:
\(\overrightarrow{MN}=\left(3;-1;-4\right)\Rightarrow\) pt mặt phẳng trung trực của MN:
\(3\left(x-\frac{7}{2}\right)-\left(y-\frac{1}{2}\right)-4\left(z-2\right)=0\Leftrightarrow3x-y-4z-2=0\)
\(\overrightarrow{PN}=\left(4;3;-1\right)\Rightarrow\) pt mp trung trực PN: \(4x+3y-z-7=0\)
\(\Rightarrow\) Phương trình đường thẳng giao tuyến của 2 mp trên: \(\left\{{}\begin{matrix}x=1+t\\y=1-t\\z=t\end{matrix}\right.\)
\(\Rightarrow I\left(1+c;1-c;c\right)\) \(\Rightarrow\overrightarrow{NI}=\left(c-4;1-c;c\right)\)
\(d\left(I;\left(Oyz\right)\right)=IN\Rightarrow\left|1+c\right|=\sqrt{\left(c-4\right)^2+\left(1-c\right)^2+c^2}\)
\(\Leftrightarrow\left(c+1\right)^2=3c^2-10c+17\)
\(\Leftrightarrow2c^2-12c+16=0\Rightarrow\left[{}\begin{matrix}c=4\\c=2\end{matrix}\right.\)
Mà \(a+b+c< 5\Rightarrow\left(1+c\right)+\left(1-c\right)+c< 5\Rightarrow c< 3\Rightarrow c=2\)
Câu 2:
Phương trình tham số d: \(\left\{{}\begin{matrix}x=-1+2t\\y=t\\z=2-t\end{matrix}\right.\) \(\Rightarrow C\left(-1+2n;n;2-n\right)\)
\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AC}=\left(2n;n-3;1-n\right)\\\overrightarrow{AB}=\left(1;-1;-2\right)\end{matrix}\right.\) \(\Rightarrow\left[\overrightarrow{AB};\overrightarrow{AC}\right]=\left(3n-7;-3n-1;3n-3\right)\)
\(\Rightarrow S_{ABC}=\frac{1}{2}\left|\left[\overrightarrow{AB};\overrightarrow{AC}\right]\right|=2\sqrt{2}\)
\(\Leftrightarrow\sqrt{\left(3n-7\right)^2+\left(-3n-1\right)^2+\left(3n-3\right)^2}=4\sqrt{2}\)
\(\Leftrightarrow27n^2-54n+27=0\Rightarrow n=1\)
\(\Rightarrow C\left(1;1;1\right)\Rightarrow m+n+p=3\)
câu 5 ấy chắc thầy tui buồn ngủ nên quánh lộn chữ sai thành đúng r
12.
\(R=d\left(I;Oxz\right)=\left|y_I\right|=3\)
Phương trình:
\(x^2+\left(y+3\right)^2+z^2=9\)
\(\Leftrightarrow x^2+y^2+z^2+6y=0\)
13.
\(R=d\left(M;\alpha\right)=\frac{\left|1-1+2.2-3\right|}{\sqrt{1^2+1^2+2^2}}=\frac{1}{\sqrt{6}}\)
Pt mặt cầu:
\(\left(x-1\right)^2+\left(y-1\right)^2+\left(z+2\right)^2=\frac{1}{6}\)
14.
\(R=d\left(I;\left(P\right)\right)=\frac{\left|-1-4-2-2\right|}{\sqrt{1^2+2^2+2^2}}=3\)
Phương trình:
\(\left(x+1\right)^2+\left(y-2\right)^2+\left(z-1\right)^2=9\)
\(\Leftrightarrow x^2+y^2+z^2+2x-4y-2z-3=0\)