Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Phương pháp:
+ Tìm tâm và bán kính của mặt cầu
+ Xác định vị trí tương đối của mặt phẳng và mặt cầu để suy ra vị trí của điểm M
+ Tìm tọa độ của đường thẳng và mặt cầu thì ta giải hệ phương trình gồm phương trình đường thẳng và phương trình mặt cầu
Cách giải:
Mặt cầu (S) có tâm
nên mặt phẳng (P) không cắt mặt cầu (S).Khi đó điểm M thuộc mặt cầu (S) sao cho khoảng cách từ M đến mặt phẳng (P) là nhỏ nhất thì M là giao điểm của đường thẳng d đi qua I , nhận n P → = 2 ; - 1 ; 2 làm VTCP với mặt cầu.
Phương trình đường thẳng
Tọa độ giao điểm của đường thẳng d và mặt cầu (S) thỏa mãn hệ phương trình
Đáp án D
Tâm I 1 ; 2 ; 3 , R = 3.
Gọi H là hình chiếu của I lên mặt phẳng (P), điểm M cần tìm chính là giao điểm của IH với mặt cầu, M là điểm khác phía với H so với điểm I.
I H : x = 1 + 2 t y = 2 − 2 t z = 3 + t .
Ta tìm giao điểm của IH với mặt cầu (S).
4 t 2 + 4 t 2 + t 2 = 9 ⇔ t = ± 1.
Vậy M 3 ; 0 ; 4 hoặc M - 1 ; 4 ; 2 . Nhận thấy M 3 ; 0 ; 4 có khoảng cách đến (P) lớn hơn.
Vậy a + b + c = 7.