Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(D=4+4^2+4^3+...+4^{100}\)
=>\(4D=4^2+4^3+...+4^{101}\)
=>\(4D-D=4^{101}+4^{100}+4^{99}+...+4^3+4^2-4^{100}-4^{99}-...-4^2-4\)
=>\(3D=4^{101}-4\)
=>\(D=\dfrac{4^{101}-4}{3}\)
`#3107.101107`
\(D=4 + 4^2 + 4^3 + 4^4 + …. + 4^{100}\)
\(4D=4^2 + 4^3 + 4^4 + ... + 4^{101}\)
\(4D - D = (4^2 + 4^3 + 4^4 ... + 4^{101}) - (4 + 4^2 + 4^3 + ... + 4^{100})\)
\(3D = 4^2 + 4^3 + 4^4 + ... + 4^{101} - 4 - 4^2 - 4^3 - ... - 4^{100}\)
\(3D = 4^{101} - 4\)
\(D = \dfrac{4^{101} - 4}{3}\)
Vậy, \(D=\dfrac{4^{101} - 4}{3}.\)
\(C=2+4+6+8+...+50\)
Số các số hạng của \(C\) là:
\(\left(50-2\right):2+1=25\left(số\right)\)
Tổng \(C\) bằng:
\(\left(50+2\right)\cdot25:2=650\)
\(---\)
\(D=1+2+3+4+...+200\)
Số các số hạng của \(D\) là:
\(\left(200-1\right):1+1=200\left(số\right)\)
Tổng \(D\) bằng:
\(\left(200+1\right)\cdot200:2=20100\)
\(---\)
\(E=1+4+7+10+...+100\)
Số các số hạng của \(E\) là:
\(\left(100-1\right):3+1=34\left(số\right)\)
Tổng \(E\) bằng:
\(\left(100+1\right)\cdot34:2=1717\)
\(Toru\)
Khoảng cách giữa 2 số hạng liên tiếp ở tổng A là: 2
Số số hạng của tổng C là:
(50 - 2) : 2 + 1 = 25 (số hạng)
Tổng C có giá trị là:
(2 + 50) x 25 : 2 = 650
-----------------------------------------
Số số hạng của tổng D là: 200
Tổng D có giá trị là:
(1 + 200) x 200 : 2 = 20100
----------------------------------------
Khoảng cách giữa 2 số hạng liên tiếp của tổng E là: 3
Số số hạng của tổng E là:
(100 - 1) : 3 + 1 = 34 (số hạng)
Tổng E có giá trị là:
(1 + 100) x 34 : 2 = 1717
Đáp số: C = 650
D = 20100
E = 1717
Nhiều thế ưu tiên làm câu 2 trước
a) A = 1 + 3 + 32 + ... + 3100
3A = 3 + 32 + ... + 3101
3A - A = 3101 - 1
2A = 3101 - 1 => A = \(\frac{3^{101}-1}{2}\)
b) B = 1 + 4 + 42 + ... + 4100
4B = 4 + 42 + ... + 4101
4B - B = 4101 - 1
3B = 4101 - 1 => B = \(\frac{4^{101}-1}{3}\)
c) C = 1 + 5 + 52 + ... + 5100
5C = 5 + 52 + ... + 5101
5C - C = 5101 - 1
4C = 5101 - 1 => C = \(\frac{5^{101}-1}{4}\)
d) chả hiểu gì hết
\(\frac{4}{2.3}+\frac{4}{3.4}+\frac{4}{4.5}+...+\frac{4}{99.100}\)
\(=4.\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\right)\)
\(=4.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(=4.\left(\frac{1}{2}-\frac{1}{100}\right)\)
\(=4.\frac{49}{100}\)
\(=\frac{49}{25}\)
a, 1+(-2)+3+(-4)+....+19+(-20)
=[1+(-2)]+[3+(-4)]+...[19+(-20)]
=-1.10
=-10
a, Số số hạng của dãy trên là
(20-1)÷1+1=20(số hạng )
Ta nhóm hai số hạng của dãy trên vào một nhóm để mỗi nhóm có giá trị là -1
Số nhóm là
20÷2 = 10( nhóm )
Ta nhóm như sau
[1+(-2)]+[3+(-4)]+...+[19+(-20)
-1+(-1)+...+(-1)
10 số hạng
-1×10=-10
Vậy ....
Mấy câu kia làm như vậy chỉ thay số
Học tốt
B = 4 + 42 + 43 + ... + 4100
4B = 42 + 43+ 44 + ... + 4101
4B - B = ( 42 + 43 + 44 + ... + 4101 ) - ( 4 + 42 + 43 + ... + 4100 )
3B = 4101 - 4
B = \(\frac{4^{101}-4}{3}\)
a) =[ 1+(-2)] + [ 3+(-4)] +...+ [ 19+(-20)] = (-1)+(-1)+(-1)+...+ (-1) (có 10 số -1)
= -1. 10 = -10
b) =1+(-2) + 3+(-4)+ ...+ 99 + (-100)
=[1+(-2)] + [ 3+(-4)] +...+ [ 99+(-100)] =(-1)+(-1)+(-1)+...+ (-1) (có 50 số -1)
=-1.50=-50
c, d các em làm tương tự
e) 1+2-3-4+5+6-7-8+9+...+97+98-99-100
= 1+ (2-3-4+5) + (6-7-8+9) + ...+ (98-99-100+101) - 101
=1+0+0+0+...+0 -101
=1-101=-100
Chúc cac em học tốt
\(D=4+4^2+4^3+4^4+...+4^{100}\)
\(4D=4^2+4^3+4^4+4^5+...+4^{101}\)
\(4D-D=\left(4^2+4^3+4^4+4^5+...+4^{101}\right)-\left(4+4^2+4^3+4^4+...+4^{100}\right)\)
\(3D=4^{101}-4\)
\(D=\dfrac{4^{101}-4}{3}\)
\(#WendyDang\)
D=1,606938044*10^60