K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 11 2020

a) Ta có : x2 - 2xy - 4z2 + y2

= ( x2 - 2xy + y2 ) - 4z2

= ( x - y )2 - ( 2z )2

= ( x - y - 2z )( x - y + 2z )

Với x = 6 ; y = 4 ; z = 45 

=> Giá trị của biểu thức = ( 6 - 4 - 2.45 )( 6 - 4 + 2.45 ) = ( 2 - 90 )( 2 + 90 ) = 22 - 902 = 4 - 8100 = -8096

b) 3( x - 5 )( x + 7 ) + ( x - 4 )2

= 3( x2 + 2x - 35 ) + x2 - 8x + 16

= 3x2 + 6x - 105 + x2 - 8x + 16

= 4x2 - 2x - 89

Với x = 0, 5 = 1/2

Giá trị của biểu thức = 4.(1/2)2 - 2.1/2 - 89 = 1 - 1 - 89 = -89

6 tháng 11 2020

cam on nhe

11 tháng 4 2016
giup mik vs. Cau nao cux dk
5 tháng 7 2017

1, xy(x+y)+yz(y+z)+xz(x+z)+2xyz

= x2y+xy2+y2z+yz2+x2z+xz2+2xyz

=(x2y+x2z+xz2+xyz) + ( xy2+y2z+yz2+xyz)

=x(xy+xz+z2+yz)+y(xy+yz+z2+xz)

=(xy+xz+yz+z2).(x+y)

=(x(y+z)+z(y+z)).(x+y)

=((y+z).(x+z)).(x+y)= (x+y)(x+z)(y+z)

2. 3(x-3)(x-7)+(x-4)2+48

=3(x2+4x-21)+x2-8x+16+48

=4x2-4x+1 = (2x-1)2

Thay x=0,5 vào bt trên, ta có : (2.0,5 -1)2=0

3, x2-6x+10

= x2-2.3.x+9+1

=(x-3)2+1 \(\ge\)1 >0 ( do (x-3)>=0 với mọi x)

=> x26x+10 >0 với mọi x

4x-x2-5

=-(x2-4x+5)

=- (x2-2.2x+4+1)

= - ((x-2)2+1) = -(x-2)2-1\(\le\)-1 < 0 ( do (x-2)2\(\ge\)0 với mọi x => - (x-2)2\(\le\)0 với mọi x)

vậy, 4x-x2-5<0 với mọi x

5 tháng 7 2017

Ta có : x2 - 6x + 10 

= x2 - 6x + 9 + 1 

= (x - 3)2 + 1

Mà (x - 3)2 \(\ge0\forall x\)

Nên : (x - 3)2 + 1 \(\ge1\forall x\)

=> (x - 3)2 + 1 \(>0\)(đpcm)

Bài 2:

a: ĐKXĐ: \(x\notin\left\{0;2;-2;3\right\}\)\(A=\left(\dfrac{-\left(x+2\right)}{x-2}-\dfrac{4x^2}{\left(x-2\right)\left(x+2\right)}+\dfrac{x-2}{x+2}\right):\dfrac{x\left(x-3\right)}{x^2\left(2-x\right)}\)

\(=\dfrac{-x^2-4x-4-4x^2+x^2-4x+4}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{-x\left(x-2\right)}{x-3}\)

\(=\dfrac{-4x^2-8x}{\left(x+2\right)}\cdot\dfrac{-x}{x-3}\)

\(=\dfrac{-4x\left(x+2\right)}{x+2}\cdot\dfrac{-x}{x-3}=\dfrac{4x^2}{x-3}\)

b: Để A>0 thì x-3>0

hay x>3

 

18 tháng 11 2019

\(A=x^2+2xy+y^2-4x-4y+1\)

\(A=\left(x+y\right)^2-4\left(x+y\right)+1\)

\(A=3^2-4.3+1\)

\(A=-2\)

\(x^2+2xy+y^2-4x-4y+\)\(1\)

\(=\left(x^2+2xy+y^2\right)-\left(4x+4y\right)+1\)

\(=\left(x+y\right)^2-4\left(x+y\right)+1\)

Thay x+y = 1, ta có:

\(=3^2-4.3+1=-2\)

18 tháng 9 2018

Đặt \(x^2-4x-5=t\Rightarrow x^2-4x-19=t-14\)

Ta có: \(\left(x^2-4x-5\right)\left(x^2-4x-19\right)+50\)

     \(=t\left(t-14\right)+50\)

     \(=t^2-14t+50\)

     \(=t^2-14t+49+1=\left(t-7\right)^2+1>0\forall t\)

Vậy biểu thức trên luôn dương với mọi giá trị của biến.

Chúc bạn học tốt.

16 tháng 10 2015

bài toán gì mà dài dòng quá

8 tháng 8 2018

a)x(x-6) - y(6-x) tại x=2006, y=2002

ta có: x(x-6) - y(6-x)

=x(x-6)+y(x-6)

=(x-6)(x+y)*

thay x=2006, y=2002 vào * ta có

(2006-6)(2006+2002)= 2000 .4008=8016000

b) 5x(x-y)-y(x-y) tại x=60, y=5

ta có: 5x(x-y)-y(x-y)

=(x-y)(5x-y)

thay x=60, y=5 ta có

(60-5)(5.60-5) =55.(300-5)=55.295=16225