Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\sin^4x=\left(\sin^2x\right)^2=\left(\dfrac{1-\cos2x}{2}\right)^2\)
\(=\dfrac{1}{4}\left(1-2\cos2x+\cos^22x\right)\)
\(=\dfrac{1}{4}\left(1-2.\cos2x+\dfrac{1+\cos4x}{2}\right)\)
\(=\dfrac{3}{8}-\dfrac{1}{2}\cos2x+\dfrac{1}{8}\cos4x\)
Vậy:
\(\int\sin^4x\text{dx}=\int\left(\dfrac{3}{8}-\dfrac{1}{2}\cos2x+\dfrac{1}{8}\cos4x\right)\text{dx}\)
\(=\dfrac{3}{8}x-\dfrac{1}{4}\sin2x+\dfrac{1}{32}\sin4x+C\)
1)
Ta có \(P_1=\int \frac{\cos xdx}{2\sin x-7}=\int \frac{d(\sin x)}{3\sin x-7}\)
Đặt \(\sin x=t\Rightarrow P_1=\int \frac{dt}{3t-7}=\frac{1}{3}\int \frac{d(3t-7)}{3t-7}=\frac{1}{3}\ln |3t-7|+c\)
\(=\frac{1}{3}\ln |3\sin x-7|+c\)
2)
\(P_2=\int \sin xe^{2\cos x+3}dx\)
Đặt \(\cos x=t\)
\(P_2=-\int e^{2\cos x+3}d(\cos x)=-\int e^{2t+3}dt\)
\(=-\frac{1}{2}\int e^{2t+3}d(2t+3)=\frac{-1}{2}e^{2t+3}+c\)
\(=\frac{-e^{2\cos x+3}}{2}+c\)
3)
\(P_3=\int \frac{\sin x+x\cos x}{(x\sin x)^2}dx\)
Để ý rằng \((x\sin x)'=x'\sin x+x(\sin x)'=\sin x+x\cos x\)
Do đó: \(d(x\sin x)=(x\sin x)'dx=(\sin x+x\cos x)dx\)
Suy ra \(P_3=\int \frac{d(x\sin x)}{(x\sin x)^2}\)
Đặt \(x\sin x=t\Rightarrow P_3=\int \frac{dt}{t^2}=\frac{-1}{t}+c=\frac{-1}{x\sin x}+c\)
π 2 /4
Hướng dẫn: Đặt x = π − t, ta suy ra:
Vậy
Đặt tiếp t = tanu