Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2010x2 + -1x + -2011 = 0
<=> -2011 + -1x + 2010x2 = 0
<=> -2011 + -1x + 2010x2 = 0
<=> (-1 + -1x)(2011 + -2010x) = 0
=> -1 + -1x = 0 hoặc 2011 + (-2010x) = 0
=> x = -1 hoặc x = \(\frac{2011}{2010}\)
Ta có: x = 2011 \(\Rightarrow\) 2010 = x - 1
\(A=x^{2011}-2010x^{2010}-2010x^{2009}-...-2010x+1\)
\(=x^{2011}-\left(x-1\right)x^{2010}-\left(x-1\right)x^{2009}-...-\left(x-1\right)x+1\)
\(=x^{2011}-\left(x-1\right)x^{2010}-\left(x-1\right)x^{2009}-...-\left(x-1\right)x+1\)
\(=x^{2011}-x^{2011}+x^{2010}-x^{2010}+x^{2009}-...-x^2+x+1\)
\(=x+1\)
\(=2011+1\)
\(=2012.\)
x=2011
=> 2010= x-1
A = x^2011- (x-1) x^2010- (x-1).x^2009-.....- (x-1).x+1
= x^2011-x^2011+x^2010- x^2010+x^2009..x^2.-x^2+x+1
= x+1
=(x-1)+2= 2010+2=2012
-Ta thấy \(x^4+x^2+1=x^4-x+x^2+x+1=\left(x^2-x\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)=\left(x^2-x+1\right)\left(x^2+x+1\right)\)
Vậy PT sẽ thành
\(\frac{2010x\left(x^3+1\right)}{x\left(x^4+x^2+1\right)}+\frac{2010x\left(x^3-1\right)}{x\left(x^4+x^2+1\right)}=\frac{2011}{x\left(x^4+x^2+1\right)}\)
\(\Leftrightarrow2.2010x^4=2011\Leftrightarrow x=...\)
Bài 2:
Ta có : \(2010=2011-1=x-1\)
Thay \(2010=x-1\) vào biểu thức A ,có :
\(x^{2011}-\left(x-1\right)x^{2010}-\left(x-1\right)x^{2009}-...-\left(x-1\right)x+1\)
\(=x^{2011}-x^{2011}+x^{2010}-x^{2010}+x^{2009}-...-x^2+x+1\)
\(=x+1\)
\(=2011+1=2012\)
Vậy giá trị biểu thức A là 2012
Bài 3:
\(a+b+c=0\)
\(\Rightarrow a+b=-c\)
\(\Rightarrow\left(a+b\right)^2=\left(-c\right)^2\)
\(\Rightarrow a^2+2ab+b^2=c^2\)
\(\Rightarrow a^2+b^2-c^2=-2ab\left(1\right)\)
Tương tự :
\(a+b+c=0\)
\(\Rightarrow a+c=-b\)
\(\Rightarrow\left(a+c\right)^2=\left(-b\right)^2\)
\(\Rightarrow a^2+2ac+c^2=b^2\)
\(\Rightarrow a^2+c^2-b^2=-2ac\left(2\right)\)
\(a+b+c=0\)
\(\Rightarrow b+c=-a\)
\(\Rightarrow\left(b+c\right)^2=\left(-a\right)^2\)
\(\Rightarrow b^2+c^2-a^2=-2bc\left(3\right)\)
Từ (1)(2)(3)
\(\Rightarrow A=\dfrac{-ab}{2ab}+\dfrac{-bc}{2bc}+\dfrac{-ac}{2ac}\)
\(=\dfrac{-abc-abc-abc}{2abc}=\dfrac{-3abc}{2abc}=-\dfrac{3}{2}\)
\(x.\left(x-2009\right)-2010x+2009.2010=0\)
\(x.\left(x-2009\right)-2010\left(x-2009\right)=0\)
\(\left(x-2009\right)\left(x-2010\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-2009=0\\x-2010=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2009\\x=2010\end{cases}}}\)
Vậy \(\orbr{\begin{cases}x=2009\\x=2010\end{cases}}\)
có khi đề sai k bn
\(\text{Δ}=\left(-1\right)^2-4\cdot2010\cdot2011=-16168439< 0\)
=>PTVN