Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: f(x)=-3
<=>x5-2x2+x4-x5+3x2-x4-3+2x=-3
<=>(x5-x5)+(-2x2+3x2)+(x4-x4)+2x-3=-3
<=>x2+2x-3=-3
<=>x2+2x=0
<=>x(x+2)=0
<=>x=0 hoặc x+2=0
<=>x=0 hoặc x=-2
Vậy..........
b)đa thức f(x) có nghiệm
<=>f(x)=0
<=>x2+2x-3=0
<=>x2+3x-x-3=0
<=>x(x+3)-(x+3)=0
<=>(x-1)(x+3)=0
<=>x-1=0 hoặc x+3=0
<=>x=1 hoặc x=-3
Vậy nghiệm của đa thức f(x) là x=-3;x=1
a) Ta có f(7) = a7 + b và f(2) + f(3) = (a2+ b) + (a3 + b) = 5a + 2b. Vậy để f(7) = f(2) + f(3), ta cần giải phương trình:
a7 + b = 5a + 2b
Simplifying, ta được: 2a = b.
Vậy điều kiện của a và b để f(7) = f(2) + f(3) là b = 2a.
b) Để tìm nghiệm của P(x), ta cần giải phương trình (x-2)(2x+5) = 0:
(x-2)(2x+5)= 0
→ X-2 = 0 hoặc 2x+5 = 0
→ x = 2 hoặc x = -5/2
Vậy nghiệm của P(x) là x = 2 hoặc x =-5/2.
c) Ta biết rằng đa thức P(x) có 1 nghiệm là -2, vậy ta có thể viết P(x)
dưới dạng:
P(x) = (x+2)(x^3 - 2x^2 + ax - 2)
Từ đó suy ra:
P(-2) = (-2+2)(8 - 4a - 2) = 0
⇔-8a= 16
⇔a = -2
Vậy hệ số a của P(x) là -2.
Bài 2:
a: A(x)=0
=>-4x+7=0
=>4x=7
=>x=7/4
b: B(x)=0
=>x(x+2)=0
=>x=0 hoặc x=-2
c: C(x)=0
=>1/2-căn x=0
=>căn x=1/2
=>x=1/4
d: D(x)=0
=>2x^2-5=0
=>x^2=5/2
=>\(x=\pm\dfrac{\sqrt{10}}{2}\)
Tìm nghiệm của các đa thức :
a, f(x)= x+2
b,f(x)= x-5
c,f(x)= 2x-4
d,f(x)= 4x+8
e,f(x)= 2x+½
f, f(x)= 5x-½
a) \(f\left(x\right)=x+2=0\)
<=> \(x=-2\)
Vậy...
b) \(f\left(x\right)=x-5=0\)
<=> \(x=5\)
Vậy...
c) \(f\left(x\right)=2x-4=0\)
<=> \(x=2\)
Vậy...
d) \(f\left(x\right)=4x+8=0\)
<=> \(x=-2\)
Vậy...
e) \(f\left(x\right)=2x+\frac{1}{2}=0\)
<=> \(x=-\frac{1}{4}\)
Vậy...
f) \(f\left(x\right)=5x-\frac{1}{2}\)
<=> \(x=\frac{1}{10}\)
Vậy..
a) \(F\left(x\right)=\left(2x^2-4x+5\right)-\left(x^2-6\right)+2x-3\)
\(=2x^2-4x+5-x^2+6+2x-3\)
\(=\left(2x^2-x^2\right)+\left(2x-4x\right)+\left(5+6-3\right)\)
\(=x^2-2x+8\)
Hệ số tự do của đa thức F(x) là: 8
Hệ số bậc 1 của đa thức F(x) là: -2
b) \(F\left(x\right)=x^2-2x+8\); \(G\left(x\right)=-x^2-2x-9\)
+) \(\Rightarrow F\left(x\right)+G\left(x\right)=\left(x^2-2x+8\right)+\left(-x^2-2x-9\right)\)
\(=\left(x^2-x^2\right)+\left(-2x-2x\right)+\left(8-9\right)=-4x-1\)
Vậy \(M\left(x\right)=-4x-1\)
+) và \(F\left(x\right)-G\left(x\right)=\left(x^2-2x+8\right)-\left(-x^2-2x-9\right)\)
\(=\left(x^2+x^2\right)+\left(-2x+2x\right)+\left(8+9\right)=2x^2+17\)
Vậy \(N\left(x\right)=2x^2+17\)
c)
+) M(x) có nghiệm khị và chỉ khi M(x) = 0
\(\Leftrightarrow-4x-1=0\Leftrightarrow-4x=1\Leftrightarrow x=\frac{-1}{4}\)
Vậy M(x) có 1 nghiệm là \(\frac{-1}{4}\)
+) N(x) có nghiệm khị và chỉ khi N(x) = 0
\(\Leftrightarrow2x^2+17=0\)
Mà \(2x^2+17\ge17\left(dox^2\ge0\right)\)
Nên N(x) vô nghiệm
d) F(x) = x2 - 3\(\Leftrightarrow x^2-2x+8=x^2-3\Leftrightarrow-2x=-11\)
\(\Leftrightarrow x=\frac{11}{2}\)
Vậy \(x=\frac{11}{2}\)thì F(x) = x2 - 3
x^2+2x-15
___
đặt f(x) = x^2 + 2x - 15
f(x) = 0
<=> x^2 + 2x - 15 = 0
<=> x^2 + 5x - 3x - 15 = 0
<=> (x^2 + 5x) - (3x + 15) = 0
<=> x(x + 5) - 3(x + 5) = 0
<=> (x - 3)(x + 5) = 0
<=> x - 3 = 0
<=> x = 3
hoặc x + 5 = 0
<=> x =-5
vậy f(x) = 0 => pt có tập nghiệm là S={ -5 ; 3 }
Đặt \(F\left(x\right)=x^2+2x-15=0\)
\(\Leftrightarrow x^2+2x+1-16=0\Leftrightarrow\left(x+1\right)^2-16=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+5\right)=0\Leftrightarrow x=3;x=-5\)
Vậy tập nghiệm đa thức trên là S = { -5 ; 3 }