Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2.
\(P=\dfrac{\sqrt{x-2018}}{x+2}+\dfrac{\sqrt{x-2019}}{x}\)\(P=\dfrac{\sqrt{\left(x-2018\right).2020}}{\left(x+2\right)\sqrt{2020}}+\dfrac{\sqrt{\left(x-2019\right).2019}}{\sqrt{2019}.x}\)
Áp dụng BĐT AM-GM:
\(\sqrt{\left(x-2018\right).2020}\le\dfrac{1}{2}\left(x-2018+2020\right)=\dfrac{1}{2}\left(x+2\right)\)
\(\sqrt{\left(x-2019\right).2019}\le\dfrac{1}{2}\left(x-2019+2019\right)=\dfrac{1}{2}x\)
\(\Rightarrow P\le\dfrac{x+2}{2\sqrt{2020}\left(x+2\right)}+\dfrac{x}{2\sqrt{2019}.x}=\dfrac{1}{2\sqrt{2020}}+\dfrac{1}{2\sqrt{2019}}\)
\("="\Leftrightarrow x=4038\)
không phải bơ đâu, oan cho tớ quá :>
27/11 thi nên ít lên, với cả chị tớ cũng không cho chat :>
lấy mật khẩu của tớ vô đọc góc ib là biết mà :>
Đặt \(\sqrt{x-3}=t\left(t\ge0\right)\Rightarrow x=t^2+3\)
\(A=2019+t^2+3-t-2\sqrt{t^2+3}\)
\(\ge2019+3-2\sqrt{3}\) (do \(t\ge0\))
Dấu "=" xảy ra \(\Leftrightarrow t=0\Leftrightarrow x=3\)
Vậy \(A_{min}=2019+3-2\sqrt{3}\Leftrightarrow x=3\)
Cách kia sai mất rồi:( Nếu sửa đề thành tìm min thì làm thế này:
Ta có: \(A=\frac{1}{2}\left(\sqrt{x-3}-1\right)^2+\frac{1}{2}\left(\sqrt{x}-2\right)^2+2018\ge2018\)
Hoặc: \(A=\frac{1}{2}\left(x-4\right)^2\left[\frac{1}{\left(\sqrt{x-3}+1\right)^2}+\frac{1}{\left(\sqrt{x}+2\right)^2}\right]+2018\ge2018\)
Đẳng thức xảy ra khi x = 4
Xét \(2A=2\sqrt{x-2}+4\sqrt{x+1}+4038-2x\) (Đk:\(x\ge2\))
\(2A=-\left[\left(x-2\right)-2\sqrt{x-2}+1\right]-\left[\left(x+1\right)-4\sqrt{x+1}+2\right]+4042\)
\(2A=-\left(\sqrt{x-2}-1\right)^2-\left(\sqrt{x+1}-2\right)^2+4042\le4042\)
\(\Leftrightarrow A\le2021\)
\(\Rightarrow Amax=2021\) khi x=3 (tm)Tự đăng câu hỏi xong tự trả lời (T-T)
a, P>0
Có \(P^2=x+2\sqrt{x\left(2-x\right)}+2-x=2+2\sqrt{2x-x^2}=\sqrt{1-\left(x^2-2x+1\right)}+2=2+\sqrt{1-\left(x-1\right)^2}\)
Luôn có: \(1-\left(x-1\right)^2\le1\)=> \(0\le\sqrt{1-\left(x-1\right)^2}\le1\)<=> \(0\le2\sqrt{1-\left(x-1\right)^2}\le4\)
<=> \(2\le2+2\sqrt{1-\left(x-1\right)^2}\le2+2\)
<=> \(2\le P^2\le4\)
<=> \(\sqrt{2}\le P\le2\)(do P>0)
minP xảy ra <=> \(\sqrt{1-\left(x-1\right)^2}=0\)
<=> \(\left(x-1\right)^2=1\) <=> \(\left[{}\begin{matrix}x=2\\x=0\end{matrix}\right.\)(t/m)
maxP xảy ra<=> \(\sqrt{1-\left(x-1\right)^2}=1\)
<=> \(\left(x-1\right)^2=0\) <=> x=1(t/m)
b, Q>0 (đk :\(2019\le x\le2020\))
Có \(Q^2=x-2019+2\sqrt{\left(x-2019\right)\left(2020-x\right)}+2020-x=1+2\sqrt{\left(x-2019\right)\left(2020-x\right)}\)
Luôn có: \(0\le2\sqrt{\left(x-2019\right)\left(2020-x\right)}\le\left(x-2019\right)+\left(2020-x\right)\)
<=> \(1\le1+2\sqrt{\left(x-2019\right)\left(2020-x\right)}\le1+1\)
<=> \(1\le Q^2\le2\)
<=> \(1\le Q\le\sqrt{2}\)( do Q>0)
minQ=1 <=> \(\sqrt{\left(x-2019\right)\left(2020-x\right)}=0\)
<=> \(\left(x-2019\right)\left(2020-x\right)=0\)
<=> x=2019(tm) hoặc x=2020(t/m)
maxQ=\(\sqrt{2}\) <=> \(x-2019=2020-x\) <=> \(x=\frac{4039}{2}\) (tm)