K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 3 2020

Bài 2 :

Tham khảo nha bạn !

Giả sử a≤b≤c⇒ab+bc+ca≤3bca≤b≤c⇒ab+bc+ca≤3bc. Theo giả thiết abc<ab+bc+caabc<ab+bc+ca (1) nên abc<3bc⇒a<3abc<3bc⇒a<3 mà a là số nguyên tố nên a = 2. Thay a = 2 vào (1) được 2bc<2b+2c+bc⇒bc<2(b+c)2bc<2b+2c+bc⇒bc<2(b+c) (2)

Vì b≤c⇒bc<4c⇒b<4b≤c⇒bc<4c⇒b<4. Vì b là số nguyên tố nên b = 2 hoặc b = 3. Với b = 2 thay vào (2) được 2c < 4 + 2c đúng với mọi c là số nguyên tùy ý. Với b = 3 thay vào (2) được c < 6 nên c = 3 hoặc c = 5

            Vậy (2; 2; c), (2; 3; 3), (2; 3; 5) với c là số nguyên tố tùy ý

3 tháng 3 2020

Vì a,b,c có vai trò như nhau. Giả sử a<b<c

Khi đó ab+bc+ca =< 3bc

=> abc<3bc => a<3 => a=2 (vì a là số nguyên tố)

Với a=2, ta có:

2bc < 2b+2c-bc =< 4c 

=> b<4 => b=2 hoặc b=3

Nếu b=2 thì 4c<2+4c thỏa mãn với c là số nguyên bất kì

Nếu b=3 thì 6c<6+5c => c<6 => c=3 hoặc c=5

Vậy các cặp số (a,b,c) cần tìm là: (2;2;p);(2;2;3);(2;3;5) và các hoán vị của chúng với p là số nguyên tố

4 tháng 1 2023

a)nếu p=2 thì :

p+10=2+10=12 là hợp số(loại)

nếu p=3 thì:

p+10=3+10=13 là số nguyên tố 

p+14=3+14=17 là số nguyên tố

(thỏa mãn)

nếu p>3 thì:

p sẽ bằng 3k+1 hoặc 3k+2

trường hợp 1:p=3k+1

nếu p=3k+1 thì:

p+14=3k+1+14=3k+15=3 nhân (k+5)chia hết cho 3(3 chia hết cho3) là hợp số(loại)

trường hợp 2:p=3k+2

nếu p=3k+2 thì:

p+10=3k+2+10=3k+12=3 nhân (k + 4)chia hết cho 3(3 chia hết cho 3)là hợp số (loại)

vậy nếu  p>3 thì không có giá trị nào thỏa mãn

vậy p=3

b)nếu q=2 thì :

q+10=2+10=12 là hợp số(loại)

nếu q=3 thì:

q+2=3+2=5 là số nguyên tố 

q+10=3+10=13 là số nguyên tố

(thỏa mãn)

nếu q>3 thì:

q sẽ bằng 3k+1 hoặc 3k+2

trường hợp 1:q=3k+1

nếu q=3k+1 thì:

q+2=3k+1+2=3k+3=3 nhân (k+1)chia hết cho 3(3 chia hết cho3) là hợp số(loại)

trường hợp 2:q=3k+2

nếu q=3k+2 thì:

q+10=3k+2+10=3k+12=3 nhân (k + 4)chia hết cho 3(3 chia hết cho 3)là hợp số (loại)

vậy nếu  q>3 thì không có giá trị nào thỏa mãn

vậy q=3

3 tháng 3 2020

Giả sử có 3 số nguyên là p;q;r sao cho \(p^q+q^p=r\)

Khi đó r > 3 nên r là số lẻ

=> p.q không cùng tính chẵn lẻ

Giả sử p=2 là q là số lẻ khi đó \(2^q+q^2=r\)

Nếu q không chia hết cho 3 thì q^2 =1 (mod3)

Mặt khác vì q lẻ nên \(2^q\)= -1(mod3)

Từ đó suy ra: \(2^q+q^2⋮3\Rightarrow r⋮3\)(vô lí)

Vậy q=3 lúc đó \(r=2^3+3^2=17\)là số nguyên tố

Vậy p=2; q=3, r=17 hoặc p=3; q=2, r=17

9 tháng 9 2017

Nếu cả 3 số p,q,r không chia hết cho 3 thì  \(p^2,q^2r^2\)đều chia 3 dư 1.
Do đó\(p^2+q^2+r^2\) p2+q2+r2p2+q2+r2 chia hết cho 3 và bé hơn 3 thì vô lý
vậy ta có 2 bộ (2,3,5) hoặc (3,5,7)
Thử chọn ta được bộ (3,5,7) 

9 tháng 9 2017

3,5,7 chac chan 100%

19 tháng 12 2021

a.\(p\in\left\{3\right\}\)
b.\(q\in\left\{3\right\}\)

19 tháng 12 2021

a: p=3

b: p=3

20 tháng 12 2021

a: p=3

b: q=3