K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 9 2020

\(B=\frac{2-\sqrt{2+\sqrt{2+\sqrt{2}}}}{2-\sqrt{2+\sqrt{2}}}=\frac{2^2-\left(\sqrt{2+\sqrt{2+\sqrt{2}}}\right)^2}{\left(2-\sqrt{2+\sqrt{2}}\right)\left(2+\sqrt{2+\sqrt{2+\sqrt{2}}}\right)}\)

\(=\frac{2-\sqrt{2+\sqrt{2}}}{\left(2-\sqrt{2+\sqrt{2}}\right)\left(2+\sqrt{2+\sqrt{2+\sqrt{2}}}\right)}\)

\(=\frac{1}{2+\sqrt{2+\sqrt{2+\sqrt{2}}}}\)

11 tháng 9 2020

Cho mình bổ sung nha, nãy bấm nhầm gửi lun

Xét \(\sqrt{2}< 2\Rightarrow2+\sqrt{2}< 4\Rightarrow\sqrt{2+\sqrt{2}}< 2\Rightarrow2+\sqrt{2+\sqrt{2}}< 4\)

\(\Rightarrow\sqrt{2+\sqrt{2+\sqrt{2}}}< 2\Rightarrow2+\sqrt{2+\sqrt{2+\sqrt{2}}}< 4\)

\(\Rightarrow\frac{1}{2+\sqrt{2+\sqrt{2+\sqrt{2}}}}>\frac{1}{4}\)

\(\Rightarrow B>\frac{1}{4}\)

17 tháng 6 2017

1/ bình phương hai vế được (căn11)^2+(căn5)^2=11+5   4^2=16 vậy căn 11+căn 5=4

2/ tương tự (3 căn3 )^2=27   (căn19)^2-(căn 2)^2=19-2=17  vậy 3 căn 3 >căn 19-căn2

12 tháng 7 2016

bìn phương 2 vế lên rồi so sánh nha bạn

25 tháng 7 2021

a,Ta có :  \(1-\sqrt{3}\)\(\sqrt{2}-\sqrt{6}=\sqrt{2}\left(1-\sqrt{3}\right)\Rightarrow1-\sqrt{3}< \sqrt{2}\left(1-\sqrt{3}\right)\)

Vậy \(1-\sqrt{3}< \sqrt{2}-\sqrt{6}\)

b, Đặt A =  \(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}-\sqrt{2}\)(*)

\(\sqrt{2}A=\sqrt{8+2\sqrt{7}}-\sqrt{8-2\sqrt{7}}-2\)

\(=\sqrt{7}+1-\sqrt{7}+1-2=0\Rightarrow A=0\)

Vậy (*) = 0 

1: 

Ta có: \(\sqrt{2}-\sqrt{6}\)

\(=\sqrt{2}\left(1-\sqrt{3}\right)< 0\)

\(\Leftrightarrow1-\sqrt{3}< \sqrt{2}-\sqrt{6}\)

22 tháng 6 2016

\(1+\sqrt{3}< 2+\sqrt{2}\)

\(\sqrt{5}+\sqrt{3}>3\)

(Đúng thì k cho mình nhá!)

10 tháng 7 2021

\(5\sqrt{2}+\sqrt{75}=5\sqrt{2}+5\sqrt{3}\)

\(5\sqrt{3}+\sqrt{50}=5\sqrt{3}+5\sqrt{2}\)

\(\Rightarrow5\sqrt{2}+\sqrt{75}=5\sqrt{3}+\sqrt{50}\)

 

AH
Akai Haruma
Giáo viên
12 tháng 9 2021

Lời giải:

$\sqrt{3}+5> \sqrt{1}+5=6$

$\sqrt{2}+\sqrt{11}< \sqrt{4}+\sqrt{16}=6$

$\Rightarrow \sqrt{3}+5> \sqrt{2}+\sqrt{11}$

b: \(\sqrt{\dfrac{3}{2}}>\sqrt{\dfrac{2}{2}}=1\)

a: \(\left(2\sqrt{5}-3\sqrt{2}\right)^2=38-12\sqrt{10}=1+37-12\sqrt{10}\)

\(1^2=1\)

mà \(37-12\sqrt{10}< 0\)

nên \(2\sqrt{5}-3\sqrt{2}< 1\)