K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2016

đã tắt máy chưa để cho mình giải nha

16 tháng 8 2016

Giúp mik nha mọi người :)

m: (x-y)(x^2-2xy+y^2)

=(x-y)*(x-y)^2

=(x-y)^3

=x^3-3x^2y+3xy^2-y^3

n: =-(x^3+x^2y-x-x^2y-xy^2+y)

=-x^3+x+xy^2-y

o: =-(x^3+x^2y^2-x^2-2xy-2y^3+2y)

=-x^3-x^2y^2+x^2+2xy+2y^3-2y

p: (1/2x-1)(2x-3)

=1/2x*2x-1/2x*3-2x+3

=x^2-3/2x-2x+3

=x^2-7/2x+3

q: (x-1/2y)(x-1/2y)

=(x-1/2y)^2

=x^2-xy+1/4y^2

r: (x^2-2x+3)(1/2x-5)

=1/2x^3-5x^2-x^2+10x+3/2x-15

=1/2x^3-6x^2+11,5x-15

16 tháng 8 2016

\(B=\frac{x^2\left(y-z\right)+y^2\left(z-x\right)+z^2\left(x-y\right)}{x^2y-x^2z+y^2z-y^3}\)

\(=\frac{x^2y-x^2z+zy^2-xy^2+z^2x-z^2y}{x^2\left(y-z\right)-y^2\left(y-z\right)}\)

\(=\frac{\left(x^2y-z^2y\right)-\left(xy^2-zy^2\right)-\left(x^2z-z^2x\right)}{\left(x^2-y^2\right)\left(y-z\right)}\)

\(=\frac{\left[y\left(x+z\right)-y^2-xz\right]\left(x-z\right)}{\left(x-y\right)\left(x+y\right)\left(y-z\right)}\)

\(=\frac{\left(xy+zy-y^2-xz\right)\left(x-z\right)}{\left(x-y\right)\left(x+y\right)\left(y-z\right)}\)

\(=\frac{\left[\left(xy-y^2\right)-\left(xz-zy\right)\right]\left(x-z\right)}{\left(x-y\right)\left(x+y\right)\left(y-z\right)}\)

\(=\frac{\left[y\left(x-y\right)-z\left(x-y\right)\right]\left(x-z\right)}{\left(x-y\right)\left(x+y\right)\left(y-z\right)}\)

\(=\frac{\left(y-z\right)\left(x-y\right)\left(x-z\right)}{\left(x-y\right)\left(x+y\right)\left(y-z\right)}\)

\(=\frac{x-z}{x+y}\)

16 tháng 8 2016

\(A=\frac{\left(x^2-y\right)\left(y+1\right)+x^2y^2-1}{\left(x^2+y\right)\left(y+1\right)+x^2y^2+1}\)

\(=\frac{x^2y-y^2+x^2-y+x^2y^2-1}{x^2y+y^2+x^2+y+x^2y^2+1}\)

\(=\frac{\left(x^2y+x^2\right)+\left(x^2y^2-y^2\right)-\left(y+1\right)}{\left(x^2y+x^2\right)+\left(x^2y^2+y^2\right)+\left(y+1\right)}\)

\(=\frac{x^2\left(y+1\right)+y^2\left(x^2-1\right)-\left(y+1\right)}{x^2\left(y+1\right)+y^2\left(x^2+1\right)+\left(y+1\right)}\)

\(=\frac{\left(x^2-1\right)\left(y+1\right)+y^2\left(x^2-1\right)}{\left(x^2+1\right)\left(y+1\right)+y^2\left(x^2+1\right)}\)

\(=\frac{\left(x^2-1\right)\left(y^2+y+1\right)}{\left(x^2+1\right)\left(y^2+y+1\right)}\)

\(=\frac{x^2-1}{x^2+1}\)

15 tháng 6 2018

+) \(A=x^2-y+xy^2-x\)

\(A=\left(x^2-y\right)+\left(xy^2-x\right)\)

\(A=\left(x^2-y\right)+x\left(y^2-1\right)\)

Tại x = -5, y = 2 ta có :

\(A=\left[\left(-5\right)^2-2\right]+\left(-5\right)\left(2^2-1\right)=8\)

+) \(B=3x^3-2y^3-6x^2y^2\)

\(B=3x^3-\left(2y^3+6x^2y^2\right)=3x^3-2y^2\left(y+3x^2\right)\)

Tại x = 2/3, y = 1/2 ta có :

\(B=3.\left(\dfrac{2}{3}\right)^3-2.\left(\dfrac{1}{2}\right)^2.\left(\dfrac{1}{2}+3.\dfrac{4}{9}\right)=\dfrac{55}{36}\)

+) \(C=2x+xy^2-x^2y-y\)

\(C=\left(2x+xy^2\right)-\left(x^2y+y\right)=x\left(2+y^2\right)-y\left(x^2+1\right)\)

Tại x= -1/2, y = -1/3 ta có :

\(C=\left(\dfrac{-1}{2}\right)\left[2+\left(\dfrac{-1}{3}\right)^2\right]-\left(-\dfrac{1}{3}\right)\left[\left(\dfrac{-1}{2}\right)^2+1\right]=\left(-\dfrac{19}{18}\right)-\left(-\dfrac{5}{12}\right)=\dfrac{-23}{36}\)

15 tháng 6 2018

phần A viết nhầm : sửa đề

A=x^2y-y+xy^2-x

11 tháng 9 2020

\(\left(2x+y\right)^2=4x^2+4xy+y^2\)

\(\left(x-\frac{y}{2}\right)^2=x^2-xy+\frac{y^2}{4}\)

\(\left(x^2+\frac{y}{2}\right)\left(x^2-\frac{y}{2}\right)=x^4-\frac{y^2}{4}\)

\(\left(x-2y\right)^2\left(x+2y\right)^2=\left(x^2-4y^2\right)^2\)

\(=x^4-8x^2y^2+16y^4\)

\(\left(x+y\right)^2=x^2+2xy+y^2\)

\(\left(x-2y\right)^2=x^2-4xy+4y^2\)

\(\left(xy^2+1\right)\left(xy^2-1\right)=x^2y^4-1\)

\(\left(x+y\right)^2-4\left(x-y\right)+4=x^2+2xy+y^2-4x+4y+4\)

11 tháng 9 2020

\(\left(2x+y\right)^2=4x^2+4xy+y^2\)

\(\left(x-\frac{y}{2}\right)^2=x^2-xy+\frac{y^2}{4}\)

\(\left(x^2+\frac{y}{2}\right)\left(x^2-\frac{y}{2}\right)=x^4-\frac{x^2y}{2}+\frac{x^2y}{2}-\frac{y^2}{4}=x^4-\frac{y^2}{4}\)

\(\left(x-2y\right)^2\left(x+2y\right)^2=x^4-8x^2y^2+16y^4\)

\(\left(x+y\right)^2=x^2+2xy+y^2\)

\(\left(x-2y\right)^2=x^2-4xy+4y^2\)

\(\left(xy^2+1\right)\left(xy^2-1\right)=x^2y^4-xy^2+xy^2-1=x^2y^4-1\)

\(\left(x+y\right)^2-4\left(x-y\right)+4=x^2+2xy+y^2-4x+4y+4\)

15 tháng 7 2019

giúp mk nha, Thanks you hihi