\(\left(\sqrt{x}+1\right)\left(\sqrt{y}+1\right)\ge4\)....">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\sqrt{xy}+\sqrt{x}+\sqrt{y}\ge3\)

ÁP DỤNG BĐT COSI
\(\sqrt{xy}+\sqrt{x}+\sqrt{y}\le\frac{x+y}{2}+\frac{x+1}{2}+\frac{y+1}{2}=x+y+1\ge3=>x+y\ge2\)

\(P\ge\frac{\left(x+y\right)^2}{x+y}=2\left(cosi\right)\) vậy min P=2 <=> x=y=1

12 tháng 5 2021

                      Bài làm :

Ta có :

\(\left(\sqrt{x}+1\right)\left(\sqrt{y}+1\right)\ge4\)

\(\Leftrightarrow\sqrt{xy}+\sqrt{y}+\sqrt{x}+1\ge4\)

\(\Leftrightarrow\sqrt{xy}+\sqrt{x}+\sqrt{y}\ge3\)

Áp dụng BĐT cosi cho các số không âm ; ta được :

\(3\le\sqrt{xy}+\sqrt{x}+\sqrt{y}\le\frac{x+y}{2}+\frac{x+1}{2}+\frac{y+1}{2}=x+y+1\)

\(\Rightarrow x+y\ge2\)

Ta có :

\(P=\frac{x^2}{y}+\frac{y^2}{x}\ge\frac{\left(x+y\right)^2}{x+y}=x+y\)

\(\Rightarrow P\ge2\)

Dấu "=" xảy ra khi x=y=1

Vậy MinP = 2 <=> x=y=1

14 tháng 2 2020

Từ điều kiện suy ra \(\sqrt{xy}+\sqrt{x}+\sqrt{y}\ge3\)

Áp dụng BĐT Cô-si, ta có :

\(3\le\sqrt{xy}+\sqrt{x}.1+\sqrt{y}.1\le\frac{x+y}{2}+\frac{x+1}{2}+\frac{y+1}{2}\)

\(\Rightarrow x+y\ge2\)

Ta có : \(\frac{x^2}{y}+y\ge2\sqrt{\frac{x^2}{y}.y}=2x\)\(\frac{y^2}{x}+x\ge2\sqrt{\frac{y^2}{x}.x}=2y\)

\(\Rightarrow\frac{x^2}{y}+\frac{y^2}{x}+x+y\ge2x+2y\)

\(\Rightarrow P=\frac{x^2}{y}+\frac{y^2}{x}\ge x+y\ge2\)

Vậy GTNN của P là 2 khi x = y = 1

19 tháng 5 2017

2, rút gọn B=x^2/(y-1)+y^2/(x-1) 

AM-GM : x^2/(y-1)+4(y-1) >/ 4x ; y^2/(x-1)+4(x-1) >/ 4y 

=> B >/ 4x-4(y-1)+4y-4(x-1)=4x-4y+4+4y-4x+4=8 

minB=8 

19 tháng 5 2017

Câu 1:

Áp dụng BĐT AM-GM ta có: \(x+1\ge2\sqrt{x}\)

\(\Rightarrow x+1+x+1\ge x+2\sqrt{x}+1\)

\(\Rightarrow2x+2\ge\left(\sqrt{x}+1\right)^2\left(1\right)\)

Tương tự cũng có: \(2y+2\ge\left(\sqrt{y}+1\right)^2\left(2\right)\)

Nhân theo vế của \(\left(1\right);\left(2\right)\) ta có:

\(\left(2x+2\right)\left(2y+2\right)\ge\left(\sqrt{x}+1\right)^2\left(\sqrt{y}+1\right)^2\ge16\)

\(\Rightarrow4\left(x+1\right)\left(y+1\right)\ge16\Rightarrow\left(x+1\right)\left(y+1\right)\ge4\)

Lại áp dụng BĐT AM-GM ta có:

\(\left(x+1\right)+\left(y+1\right)\ge2\sqrt{\left(x+1\right)\left(y+1\right)}\ge4\)

\(\Rightarrow x+y\ge2\). Giờ thì áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:

\(A=\frac{x^2}{y}+\frac{y^2}{x}\ge\frac{\left(x+y\right)^2}{x+y}=x+y\ge2\)

Đẳng thức xảy ra khi \(x=y=1\)

10 tháng 8 2017

post từng câu một thôi bn nhìn mệt quá

15 tháng 9 2018

TA CÓ:

\(B=\frac{1}{\sqrt{x\left(y+2z\right)}}+\frac{1}{\sqrt{y\left(z+2x\right)}}+\frac{1}{\sqrt{z\left(x+2y\right)}}\ge\frac{1}{\frac{x+y+2z}{2}}+\frac{1}{\frac{y+z+2x}{2}}+\frac{1}{\frac{z+x+2y}{2}}\)

\(\ge\frac{\left(1+1+1\right)^2}{\frac{3}{2}\left(x+y+z\right)}=\frac{18}{3\sqrt{3}}=\frac{6}{\sqrt{3}}\)

DẤU BẰNG XẢY RA:\(\Leftrightarrow x=y=z=\frac{1}{\sqrt{3}}\)

15 tháng 9 2018

\(\frac{B}{\sqrt{3}}=\frac{1}{\sqrt{3x\left(y+2z\right)}}+\frac{1}{\sqrt{3y\left(z+2x\right)}}+\frac{1}{\sqrt{3z\left(x+2y\right)}}\) 

\(\ge\frac{1}{\frac{3x+y+2z}{2}}+\frac{1}{\frac{3y+z+2x}{2}}+\frac{1}{\frac{3z+x+2y}{2}}\ge\frac{2\left(1+1+1\right)^2}{6\left(x+y+z\right)}=\frac{18}{6\sqrt{3}}\) 

\(\Rightarrow B\ge\frac{18\sqrt{3}}{6\sqrt{3}}=3\) 

Dấu "=" khi \(x=y=z=\frac{1}{\sqrt{3}}\)

23 tháng 2 2020

Sửa đề cho x,y,z dương thỏa mãn xyz=1 tìm max \(...+\frac{1}{\sqrt{\left(2z+1\right)\left(x+2\right)}}\)

gọi bthuc là A

\(\frac{1}{\sqrt{\left(2x+1\right)\left(y+2\right)}}\le\frac{2}{2x+y+3}=\frac{2}{x+y+x+1+2}\le\frac{2}{2\sqrt{xy}+2\sqrt{x}+2}=\frac{1}{\sqrt{xy}+\sqrt{x}+1}\)

Tương tự,cộng vế theo vế ta dc:

\(A\le\frac{1}{\sqrt{xy}+\sqrt{x}+1}+\frac{1}{\sqrt{yz}+\sqrt{y}+1}+\frac{1}{\sqrt{zx}+\sqrt{z}+1}\)

\(=\frac{1}{\sqrt{xy}+\sqrt{x}+1}+\frac{\sqrt{x}}{1+\sqrt{xy}+\sqrt{x}}+\frac{\sqrt{xy}}{\sqrt{x}+1+\sqrt{xy}}=1\)

Dấu  "=" xảy ra <=> x=y=z=1

14 tháng 3 2020

Do 2 không chia hết cho 3 nên \(2^n\)không chia hết cho 3 ( do \(n\in N\))

\(\Rightarrow2^n\)chia 3 dư 1 hoặc 2

\(\Rightarrow\orbr{\begin{cases}2^n-1⋮3\\2^n+1⋮3\end{cases}}\)

\(\Rightarrow\left(2^n-1\right)\left(2^n+1\right)⋮3\)với mọi \(n\in N\)(đpcm)

2.a,

\(x^2-2x+3=2\sqrt{2x^2-4x+3}\)

Đặt \(\sqrt{x^2-2x+3}=t\left(t\ge\sqrt{2}\right)\)

\(\Rightarrow2x^2-4x+3=2t^2-3\)

\(\Rightarrow\)phương trình trên trở thành:

\(t^2=2\sqrt{2t^2-3}\)

\(\Leftrightarrow t^4=8t^2-12\)

\(\Leftrightarrow t^4-8t^2+12=0\)

\(\Leftrightarrow\left(t^2-6\right)\left(t^2-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}t^2-6=0\\t^2-2=0\end{cases}}\)

TH1. \(t^2-6=0\)\(\Rightarrow x^2-2x+3=6\)\(\Leftrightarrow x^2-2x-3=0\)\(\Leftrightarrow\left(x+1\right)\left(x-3\right)=0\)

\(\Leftrightarrow x=3\)hoặc \(x=-1\)

TH2. \(t^2-2=0\) \(\Rightarrow x^2-2x+3=2\)\(\Leftrightarrow\left(x-1\right)^2=0\)\(\Leftrightarrow x=1\)

                            Vậy pt có tập nghiệm là \(S=\left\{1;3;-1\right\}\)

4.

a,

Xét tam giác ABO có OA=OB=R và AB=\(R\sqrt{2}\)(gt)

mà \(R^2+R^2=\left(R\sqrt{2}\right)^2\)

\(\Rightarrow\)độ dài 3 cạnh của tam giác ABO là một bộ số Pitagoras

\(\Rightarrow\)tam giác ABO vuông cân tại O

\(\Rightarrow\)\(\widehat{OAB}=\widehat{OBA}=45^0\)

Xét tam giác CAP có CA=CP=\(R_1\)\(\Rightarrow\)tam giác CAP cân tại C mà \(\widehat{CAP}=45^0\)

\(\Rightarrow\)tam giác CAP vuông cân tại C

tương tự \(\Rightarrow\)tam giác DBP vuông cân tại D

ta có: CP vuông góc vơi OA(c/m trên) và DB vuông góc với OB(c/m trên) 

mà OA vuông góc vơi OB \(\Rightarrow\)\(\widehat{CPD}=90^0\)

   \(\widehat{CMD}=\widehat{CMP}+\widehat{DMP}=\widehat{CPM}+\widehat{DPM}=\widehat{CPD}=90^0\)

\(\Rightarrow\)\(M\in\)đường tròn đường kính CD

do tứ giác OCPD là hình chữ nhật ( có 4 góc vuông ) \(\Rightarrow\)\(M,O,C,D,P\)cùng thuộc 1 đường tròn đường kính OP (đpcm)

\(\Rightarrow\)OM vuông góc với MP mà CD vuông góc với MP ( t/c đường nối tâm vuông góc với dây chung tại trung điểm)

\(\Rightarrow OM//CD\)(đpcm)