Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xét tính chẵn , lẻ của mỗi hàm số sau : a) y = \(\sin\)x−\(\cos\)x ; d) y = \(\sin\)x\(\cos\)2x+tanx
a) y = sinx - cosx
Đặt \(f\left(x\right)\) = y = sinx - cosx
Ta có : \(f\left(-x\right)=sin\left(-x\right)-cos\left(-x\right)\)
<=> \(f\left(-x\right)=-sinx+cosx\)
<=> \(f\left(-x\right)\ne f\left(x\right)\)
Vậy hàm số đã cho là hàm số không chẵn , không lẻ .
b) y = sinxcos2x + tanx
y = \(f\left(x\right)=sinxcos^2x+tanx\)
TXĐ : \(D_1=R\backslash\left\{\frac{\pi}{2}+k\pi\left|k\in Z\right|\right\}\)
Vì với mọi x \(\in\) D1 , ta có - x \(\in\) D1
và \(f\left(-x\right)=sin\left(-x\right)cos^2\left(-x\right)+tan\left(-x\right)\)
\(=-sinxcos^2x-tanx=-f\left(x\right)\)
Nên hàm số đã cho là hàm số lẻ
cô ơi , tại sao lại không thể biến đổi \(-\sin x+\cos x\) thành \(-\left(\sin x-\cos x\right)\)?
a) y=\(f_{\left(x\right)}\) =\(\sin x-\cos x\)
-TXĐ : D= R
-Ta thấy : Với mọi x \(\in\) D thì -x \(\in\) D
-Xét: \(f_{\left(-x\right)}\)= Sin(-x)-cos(-x)= -sinx+ cosx= -(sinx - cosx)= -\(f_{\left(x\right)}\)
=> Hàm đã cho là hàm lẻ
b) y=\(f_{\left(x\right)}\) =sinx\(cos^2\)x + tanx
-TXĐ: D= R\{\(\dfrac{\pi}{2}\)\(+k\pi\)}
-Ta thấy: Với mọi x \(\in\) D thì -x \(\in\) D
-Xét : \(f_{\left(-x\right)}\)=sin(-x)\(cox^2\)(-x) + tan(-x)= -sinxco\(s^2\)x -tanx= -(sinxco\(s^2\)x +tanx)= \(f_x\)
=> Hàm đã cho là hàm lẻ