Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tính denlta là xong mà bạn
Tình yêu sao khác thường
Đôi lúc ta thật kiên cường
Nhiều người trách mình điên cuồng
Cứ lao theo dù không lối ra
bài 1: a) \(mx^2-2\left(m-1\right)x+m+1=0\)
\(\Delta'=\left[-\left(m-1\right)\right]^2-m\left(m+1\right)\)
\(\Delta'=m^2-2m+1-m^2-m\)
\(\Delta'=-3m+1\)
để pt đã cho vô nghiệm thì \(\Delta'< 0\Leftrightarrow-3m+1< 0\Leftrightarrow m>\dfrac{1}{3}\)
b) \(3x^2+mx+m^2=0\)
có \(\Delta=m^2-4.3.m^2\)
\(\Delta=m^2-12m^2=-11m^2\)
để pt đã cho vô nghiệm thì \(\Delta< 0\Leftrightarrow-11m^2< 0\Leftrightarrow m>0\)
c) \(m^2.x^2-2m^2x+4m^2+6m+3=0\)
\(\Delta'=\left(-m^2\right)^2-m^2.\left(4m^2+6m+3\right)\)
\(\Delta'=m^4-4m^4-6m^3-3m^2\)\(\Delta'=-3m^4-6m^3-3m^2\)
để pt vô nghiệm thì \(\Delta'< 0\Leftrightarrow-3m^4-6m^3-3m^2< 0\)
\(\Leftrightarrow-3m^2.\left(m^2+2m+1\right)< 0\)
\(\Leftrightarrow-3m^2.\left(m+1\right)^2< 0\)
\(\Leftrightarrow-3m^2< 0\) ( vì \(\left(m+1\right)^2>0\forall m\ne-1\) )
\(\Leftrightarrow m>0\)
vậy \(m>0\) và \(m\ne1\)
Câu 3 : Theo định lý vi - et ta luôn có :
\(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=m^2-4m+4\end{matrix}\right.\)
\(\Rightarrow A=\left|m^2-4m+4-2m\right|=\left|m^2-6m+4\right|=\left|\left(m-3\right)^2-5\right|\ge5\)
Vậy GTNN của A là 5 . Khi và chỉ khi \(\left(m-3\right)^2=0\Leftrightarrow m=3\)
\(mx^2-2\left(3-m\right)x+m-4=0\)
+)m=0=> \(x=-\dfrac{2}{3}\)
+) m\(\ne0\)
\(\Delta'=\left(3-m\right)^2-m\left(m-4\right)\)
\(=m^2-6m+9-m^2+4m=9-2m\)
Để phương trình có nghiệm \(\Rightarrow\Delta'\ge0\Rightarrow m\le\dfrac{9}{2}\)
Để phương trình có 2 nghiệm đối nhau
\(\Leftrightarrow m+4< 0\Leftrightarrow m< -4\)
Để phương trình có 1 nghiệm
\(\Leftrightarrow\Delta'=0\Leftrightarrow m=\dfrac{9}{2}\)
\(\Leftrightarrow x=\dfrac{3-m}{m}=-\dfrac{1}{3}\)