Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\Leftrightarrow a\cdot x^3+b\cdot x^2+ac\cdot x^2+b\cdot cx+2ax+2b=x^3+x^2-2\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=1\\b+ac=1\\bc+2a=0\\2b=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=-1\\c=2\\-1\cdot2+2\cdot1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=-1\\c=2\end{matrix}\right.\)
b: \(\left(z^2-z+1\right)\left(az^2+bz+c\right)\)
\(=az^4+bz^3+cz^2-az^3-bz^2-cz+az^2+bz+c\)
\(=az^4+z^3\left(b-a\right)+z^2\left(c-b+a\right)+z\left(-c+b\right)+c\)
Theo đề, ta có: a=2; \(\left\{{}\begin{matrix}b-a=-1\\c-b+a=2\\-c+b=0\\c=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=-1+a=-1+2=1\\c=2+b-a=2+1-2=1\\1-1=0\\c=1\end{matrix}\right.\)
=>a=2; b=1; c=1
Câu 2 : \(f\left(x\right)=ax^2+bx+c=0\)
Vì theo đề:f(x)=0 với mọi giá trị của x nên t cho x nhận 3 giá trị tùy ý
Giả sử x=0;x=1;x=-1 là 3 giá trị đó.
Ta có:f(0)=a.02+b.0+c=c
f(1)=a.12+b.1+c=a+b+c
f(-1)=a.(-1)2+b.(-1)+c=a-b+c
Do đó c=0;a+b+c=0;a-b+c=0
=>a-b=0=>a=b
và a+b=0=>a=b=0
Vậy a=b=c=0
a) ta có: x=2 là nghiệm của A(x)
=> A(2) = 22 + a.2 + b =0
=> 4 + a.2 + b =0
=> b = -4 - a.2
ta có: x = 3 là nghiệm của A(x)
=> A(3) = 32 +a.3 + b = 0
=> 9+ a.3 + b = 0
thay số: 9+ a.3 - 4-2.a = 0
( 9-4) + (a.3-2.a) = 0
5 + a = 0
=> a = -5
mà b = 4-a.2 = 4 - (-5).2 = 4 + 10 = 14
=> b = 14
KL: a = -5; b= 14
phần b bn lm tương tự nha!
Ta có : \(f\left(x\right)=g\left(x\right)\)
\(\Leftrightarrow ax^3-4x\left(x-1\right)+8=x^3-4x\left(bx+1\right)+c-3\)
\(\Rightarrow ax^3=x^3\Rightarrow a=1\)
\(\Rightarrow-bx-1=x-1\Rightarrow b=-1\)
\(\Rightarrow8=c-3\Rightarrow c=11\)
Vậy \(\left\{a;b;c\right\}=\left\{1;-1;11\right\}\)
Có \(P\left(x\right)⋮5\)với mọi x
=> \(P\left(0\right)=d⋮5\)
\(P\left(1\right)=a+b+c+d⋮5\)
\(P\left(-1\right)=-a+b-c+d⋮5\)
\(P\left(2\right)=8a+4b+2c+d⋮5\)
\(P\left(-2\right)=-8a+4b-2c+d\)
=> \(a+b+c⋮5\)và \(-a+b-c⋮5\)
=> \(a+b+c+\left(-a+b-c\right)⋮5\)
=> \(2b⋮5\)
Mà 2 là SNT và b nguyên
=> \(b⋮5\)
=> \(a+c⋮5\); \(-a-c⋮5\); \(8a+2c⋮5\); \(-8a-2c⋮5\)
=> \(2\left(a+c\right)⋮5\)
=> \(2a+2c⋮5\)
=> \(2a+2c+\left(-8a-2c\right)⋮5\)
=> \(-6a⋮5\)
mà 6 không chia hết cho 5
=> \(a⋮5\)
=> \(b⋮5\)
quá đơn giản với BỐ