Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. \(x^2+4y^2+z^2=2x+12y-4z-14\)
\(\Leftrightarrow x^2+4y^2+z^2-2x-12y+4z+14=0\)
\(\Leftrightarrow\left(x^2-2x+1\right)+\left(4y^2-12y+9\right)+\left(z^2+4z+4\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2+\left(2y-3\right)^2+\left(z+2\right)^2=0\)
Ta có: \(\left\{{}\begin{matrix}\left(x-1\right)^2\ge0\\\left(2y-3\right)^2\ge0\\\left(z+2\right)\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\2y-3=0\\z+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\dfrac{3}{2}\\z=-2\end{matrix}\right.\)
b. \(x^2+3y^2+2z^2-2x+12y+4z+15=0\)
\(\Leftrightarrow\left(x^2-2x+1\right)+3\left(y^2+4y+4\right)+2\left(z^2+2z+1\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2+3\left(y+2\right)^2+2\left(z+1\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y+2=0\\z+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\\z=-1\end{matrix}\right.\)
Ta có:x2+3y2-2x+12y+13=0<=>x2+3y2-2x+12y+1+12=0
<=>(x2-2x+1)+(3y2+12y+12)=0<=>(x-1)2+3(y+2)2=0
Vì (x-1)2\(\ge0\);3(y+1)2\(\ge0\) nên:(x-1)2+3(y+2)2\(\ge0\)
Dấu "=" xảy ra khi:\(\begin{cases} (x-1)^2=0\\ 3(y+2)^2=0 \end{cases}\)<=>\(\begin{cases} x-1=0\\ y+2=0 \end{cases}\)<=>\(\begin{cases} x=1\\ y=-2 \end{cases}\)
Vậy x=1;y=-2
\(b,x^2+6x-3\left(x+6\right)=x\left(x+6\right)-3\left(x+6\right)=\left(x+6\right)\left(x-3\right)\\ c,2x^3y-8x^2y+8xy=2xy\left(x^2-4x+4\right)=2xy\left(x-2\right)^2\\ d,y^2-x^2-12y+36=\left(y^2-12y+36\right)-x^2=\left(y-6\right)^2-x^2=\left(y-x-6\right)\left(y+x-6\right)\)
b: \(x^2-6x+xy-6y\)
\(=x\left(x-6\right)+y\left(x-6\right)\)
\(=\left(x-6\right)\left(x+y\right)\)
c: \(2x^2+2xy-x-y\)
\(=2x\left(x+y\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(2x-1\right)\)
e: \(x^3-3x^2+3x-1=\left(x-1\right)^3\)
\(x^2-3y^2-2x+12y+13=0\)
\(\Rightarrow\left(x^2-2x+1\right)-3\left(y^2-4y+4\right)+4^2=0\)HÌnh như hơi vô lý bạn ạg
\(x^2+3y^2+2z^2-2x+12y+4z+15=0\)
\(\Leftrightarrow\left(x^2-2x+1\right)+3\left(y^2+4y+4\right)+2\left(z^2+2z+1\right)=0\)
ta có : \(\left\{{}\begin{matrix}\left(x-1\right)^2\ge0\forall x\\\left(y+2\right)^2\ge0\forall y\\\left(z+1\right)^2\ge0\forall z\end{matrix}\right.\) \(\Rightarrow\) \(\left(x^2-2x+1\right)+3\left(y^2+4y+4\right)+2\left(z^2+2z+1\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)^2=0\\\left(y+2\right)^2=0\\\left(z+1\right)^2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y+2=0\\z+1=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\\z=-1\end{matrix}\right.\)
vậy \(x=1;y=-2;z=-1\)
\(x^2+3y^2+2z^2-2z+12y+4z+15=0\)
\(\Leftrightarrow\left(x^2-2x+1\right)+\left(3y^2+12y+12\right)+\left(2z^2-4z+2\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2+3\left(y+4\right)^2+2\left(z-2\right)^2=0\)
\(\Rightarrow\left\{{}\begin{matrix}x=1\\y=-4\\z=2\end{matrix}\right.\)
\(\left(x+3y\right)^2-\left(2x-3y\right)^2-2x^2+12y^2\)
\(=x^2+2\cdot x\cdot3y+\left(3y\right)^2-\left[\left(2x\right)^2-2\cdot2x\cdot3y+\left(3y\right)^2\right]-2x^2+12y^2\)
\(=x^2+6xy+9y^2-4x^2+12xy-9y^2-2x^2+12y^2\)
\(=-5x^2+18xy+12y^2\)