K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
29 tháng 2 2024

Đề sai. Cho $x=1,y=-1, z=0$ thì điều kiện đề cho vẫn đúng nhưng $x\neq y\neq z$

31 tháng 3 2020

x2 = zy => \(\frac{y}{x}\) = \(\frac{x}{z}\)

y2 = xz => \(\frac{y}{x}\) = \(\frac{z}{y}\)

=> \(\frac{y}{x}\) = \(\frac{x}{z}\) = \(\frac{z}{y}\) theo tính chất bắc cầu

=> \(\frac{y}{x}\) = \(\frac{x}{z}\) = \(\frac{z}{y}\) = \(\frac{x+y+z}{x+y+z}\) = 1

=> y = x . 1 => y = x

=> x = z . 1 => x = z

=> z = y . 1 => z = y

theo tính chất bắc cầu => x = y = z

5 tháng 8 2017

Ta có:\(\frac{xy}{x+y}=\frac{yz}{y+z}\Rightarrow xy\left(y+z\right)=yz\left(x+y\right)\Leftrightarrow xy^2+xyz=xyz+y^2z\Leftrightarrow xy^2=y^2z\Rightarrow x=z\)(1)

\(\frac{yz}{y+z}=\frac{xz}{x+z}\Rightarrow yz\left(x+z\right)=xz\left(y+z\right)\Leftrightarrow xyz+yz^2=xyz+xz^2\Leftrightarrow yz^2=xz^2\Rightarrow y=x\)(2)

Từ (1)và(2)suy ra:x=y=z

\(\Rightarrow x^2=xy,y^2=yz,z^2=xz\)

\(\Rightarrow M=\frac{xy+yz+xz}{xy+yz+xz}=1\)

Vậy M=1

6 tháng 8 2017

\(x^2=xy,y^2=yz,z^2=xz\)

là sao??

16 tháng 8 2016

\(\hept{\begin{cases}x^2=yz\\y^2=xz\\z^2=xy\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{y}=\frac{z}{x}\\\frac{x}{y}=\frac{y}{z}\\\frac{z}{x}=\frac{y}{z}\end{cases}\Rightarrow\frac{x}{y}=\frac{y}{z}=\frac{z}{x}}\)

Áp dụng t/c dãy tỉ số bằng nhau:

\(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{y+z+x}=1\)

\(\Rightarrow\hept{\begin{cases}x=y\\y=z\\z=x\end{cases}\Rightarrow x=y=z}\)

17 tháng 8 2016

lo x+y+z=0 thi sao

23 tháng 4 2018

Bạn kia giải sai rồi!! xyz = yxz thì chắc gì x = y = z? Giải: Cộng các đẳng thức trên với nhau ta được: x 2 + y 2 + z 2 = xy + yz + zx ⇔2 x 2 + y 2 + z 2 = 2 xy + yz + zx ⇔ x 2 − 2xy + y 2 + y 2 − 2yz + z 2 + z 2 − 2xz + x 2 = 0 ⇔ x − y 2 + y − z 2 + z − x 2 = 0 Mà:  x − y 2 ≥ 0 y − z 2 ≥ 0 z − x 2 ≥ 0 ⇒ x − y 2 + y − z 2 + z − x 2 ≥ 0 Do đó dấu "=" xảy ra khi ⇔x = y = z 

23 tháng 4 2018

Ta có: \(x^2=yz=>x.x=y.z=\frac{x}{y}=\frac{z}{x}\left(1\right)\)

\(y^2=xz=>y.y=x.z=\frac{x}{y}=\frac{y}{z}\left(2\right)\)

\(z^2=xy=>z.z=x.y=\frac{z}{x}=\frac{y}{z}\left(3\right)\)

\(Từ\left(1\right),\left(2\right),\left(3\right)\)ta được: \(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có: \(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{x+y+z}=1\)

Với \(\frac{x}{y}=1=>x=y\left(4\right)\)

Với \(\frac{y}{z}=1=>y=z\left(5\right)\)

Từ (4) và (5) suy ra: x = y = z

=> Đpcm

4 tháng 7 2016

\(x;y;z\ne0\). Giả thiết của đề bài:

\(\frac{xy}{x+y}=\frac{yz}{y+z}=\frac{xz}{z+x}\Leftrightarrow\frac{x+y}{xy}=\frac{y+z}{yz}=\frac{x+z}{xz}\Leftrightarrow\frac{1}{x}+\frac{1}{y}=\frac{1}{y}+\frac{1}{z}=\frac{1}{x}+\frac{1}{z}\Leftrightarrow\frac{1}{x}=\frac{1}{y}=\frac{1}{z}.\)

=> x = y = z

Do đó, M = 1.

28 tháng 12 2016

Giải:
Ta có: \(x^2=yz\Rightarrow\frac{x}{y}=\frac{z}{x}\)

\(y^2=xz\Rightarrow\frac{x}{y}=\frac{y}{z}\)

\(z^2=xy\Rightarrow\frac{z}{x}=\frac{y}{z}\)

\(\Rightarrow\frac{x}{y}=\frac{y}{z}=\frac{z}{x}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{x+y+z}=1\)

+) \(\frac{x}{y}=1\Rightarrow x=y\)

+) \(\frac{y}{z}=1\Rightarrow y=z\)

+) \(\frac{z}{x}=1\Rightarrow z=x\)

\(\Rightarrow x=y=z\left(đpcm\right)\)

Vậy \(x=y=z\)

23 tháng 4 2018

x++y+z chưa \(\ne\)0 mà