K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 9 2020

\(\left(x^2+2xy-3\right).\left(-xy-3\right)\)

\(=-x^3y-3x^2-2x^2y^2-6xy+3xy+9\)

=\(-x^3y-2x^2y^2-3x^2-3xy+9\)

19 tháng 9 2020

( x2 + 2xy - 3 ) ( - xy - 3 )

= - x3y - 2x2y2 + 3xy - 3x2 - 6xy + 9

= - x3y - 2x2y2 - 3x2 - 3xy + 9

10 tháng 7 2023

0,2:x=1,03+3,97

 

 

a: A=-2xy+xy+xy^2=-xy+xy^2

Bậc là 3

b: \(B=xy^2z+2xy^2z-3xy^2z+xy^2z-xyz=-xyz+xy^2z\)

Bậc là 4

c: \(C=4x^2y^3-x^2y^3+x^4+6x^4-2x^2=3x^2y^3+7x^4-2x^2\)

Bậc là 5

d: \(D=\dfrac{3}{4}xy^2-\dfrac{1}{2}xy^2+xy=\dfrac{1}{4}xy^2+xy\)

bậc là 3

e: \(E=2x^2-4x^2+3z^4-z^4-3y^3+2y^3\)

=-2x^2+2z^4-y^3

Bậc là 4

f: \(=3xy^2z+xy^2z+2xy^2z-4xyz=6xy^2z-4xyz\)

Bậc là 4

28 tháng 11 2022

\(=\dfrac{x\left(x+y\right)}{\left(x+y\right)\left(x^2+y^2\right)}\cdot\left(\dfrac{1}{x-y}-\dfrac{2xy}{\left(x-y\right)\left(x^2+y^2\right)}\right)\)

\(=\dfrac{x}{x^2+y^2}\cdot\dfrac{x^2+y^2-2xy}{\left(x-y\right)\left(x^2+y^2\right)}\)

\(=\dfrac{x}{x^2+y^2}\cdot\dfrac{x-y}{x^2+y^2}=\dfrac{x\left(x-y\right)}{\left(x^2+y^2\right)^2}\)

6 tháng 9 2020

\(\left(\frac{1}{3}x+2\right)\left(3x-6\right)\)

\(=\frac{1}{3}x\left(3x-6\right)+2\left(3x-6\right)\)

\(=x^2-2x+6x-12\)

\(=x^2+4x-12\)

\(\left(x^2-3x+9\right)\left(x+3\right)\)

\(=\left(x+3\right)\left(x^2-3x+9\right)\)

\(=x^3+27\)

6 tháng 9 2020

a) (1/3x+2).(3x-6) = (1​​/3x.3x)+(1/3x.-6)+(2.3x)+(2.-6) = x^2-2x+6x-12 = x^2+4x-12 = x^2+2x2+2^2-16 = (x+2)^2-16

b) (x^2-3x+9).(x+3) = (x^2.x)+(x^2.3)+(-3x.x)+(-3x.3)+(9.x)+(9.3) = x^3+3x^2-3x^2-9x+9x+27 = x^3+27

c) (-2xy+3).(xy-1) = (-2xy.xy)+(-2xy.-1)+(3.xy)+(3.-1) = -2x^2y^2+2xy+3xy-3 = -2x^2y^2+5xy-3

d) x(xy-1).(xy+1) = (x^2y-x).(xy+1) = (x^2y.xy)+(x^2y.1)+(-x.xy)+(-x.1) = x^3y^2+x^2y-x^2y-x = x^3y^2-x

12 tháng 11 2017

viết sai đề hết rồi

12 tháng 11 2017

rưa mi chỉnh t cấy

29 tháng 6 2017

Phép chia các phân thức đại số

18 tháng 12 2017

Phân thức đại sốPhân thức đại số

30 tháng 11 2018

\(\dfrac{x^4-xy^3}{2xy+y^2}:\dfrac{x^3+x^2y+xy^2}{2x+y}\)

\(=\dfrac{x\left(x^3-y^3\right)}{y\left(2x+y\right)}:\dfrac{x\left(x^2+xy+y^2\right)}{2x+y}\)

\(=\dfrac{x\left(x-y\right)\left(x^2+xy+y^2\right)}{y\left(2x+y\right)}:\dfrac{x\left(x^2+xy+y^2\right)}{2x+y}\)

\(=\dfrac{x\left(x-y\right)\left(x^2+xy+y^2\right)\left(2x+y\right)}{y\left(2x+y\right)x\left(x^2+xy+y^2\right)}\)

\(=\dfrac{x-y}{y}\)

30 tháng 11 2018

ĐKXĐ: \(x,y\ne0;x\ne-\dfrac{1}{2}y\)

\(\dfrac{x^4-xy^3}{2xy+y^2}:\dfrac{x^3+x^2y+xy^2}{2x+y}\)

\(=\dfrac{x\left(x^3-y^3\right)}{y.\left(2x+y\right)}:\dfrac{x\left(x^2+xy+y^2\right)}{2x+y}\)

\(=\dfrac{x\left(x-y\right)\left(x^2+xy+y^2\right)}{y.\left(2x+y\right)}.\dfrac{2x+y}{x.\left(x^2+xy+y^2\right)}\)

\(=\dfrac{x-y}{y}\left(x;2x+y;x^2+xy+y^2\ne0\right)\)

1 tháng 8 2016

\(\frac{x^4-xy^3}{2xy+y^2}:\frac{x^3+x^2y+xy^2}{2x+y}\)

\(=\frac{x\left(x^3-y^3\right)}{y\left(2x+y\right)}.\frac{2x+y}{x^3+x^2y+xy^2}\)

\(=\frac{x\left(x-y\right)\left(x^2+xy+y^2\right)\left(2x+y\right)}{xy\left(2x+y\right)\left(x^2+xy+y^2\right)}\)

\(=\frac{x-y}{y}\)

 

1 tháng 8 2016

\(\frac{x^4-xy^3}{2xy+y^2}:\frac{x^3+x^2y+xy^2}{2x+y}\)
\(=\frac{x\left(x^3-y^3\right)}{y\left(2x+y\right)}:\frac{x\left(x^2+xy+y^2\right)}{2x+y}\)
\(=\frac{x\left(x-y\right)\left(x^2+xy+y^2\right)}{y\left(2x+y\right)}:\frac{x\left(x^2+xy+y^2\right)}{2x+y}\)
\(=\frac{x\left(x-y\right)\left(x^2+xy+y^2\right)}{y\left(2x+y\right)}.\frac{2x+y}{x\left(x^2+xy+y^2\right)}\)
\(=\frac{x-y}{y}\)

25 tháng 8 2020

a, \(\left(\frac{1}{2}xy-\frac{3}{4}\right)\left(\frac{1}{2}xy+\frac{3}{4}\right)=\frac{1}{4}x^2y^2+\frac{3}{8}xy-\frac{3}{8}xy-\frac{9}{16}=\frac{1}{4}x^2y^2-\frac{9}{16}\)

b, \(\left(2x+3\right)\left(4x^2-6x+9\right)=8x^3-12x^2+18x+12x^2-18x+27=8x^2+27\)

c, \(\left(xy-2\right)\left(x^2y^2+2xy+4\right)=x^3y^3+2x^2y^2+4xy-2x^2y^2-4xy-8=x^3y^3-8\)

25 tháng 8 2020

Mk ko chép đề bài ra nhé

a, = 1/2xy.( -3/4 + 3/4 )

   =1/2xy.

b, Áp dụng HĐT số 2, có:  (Chỗ này ko cần chép cx đc)

=(2x+3).(2x+3)^2  (^ là mũ)

=(2x+3)^3

c, Áp dụng HĐT số 2, có:

=(xy-2).(xy + 2)^2