Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, x+3(x-1)=4 => 4x-3=4 => 4x=7 => x=\(\dfrac{7}{4}\)
2, 2.(x-3)+5=3 => 2x-6+5=3 =>2x=4 => x=2
3, x.(x-2)-\(x^2\)=-2 => \(x^2-2x-x^2\)=-2 => -2x=-2 => x=1
4, \(x^2-x.\left(x+2\right)=6\)=> \(x^2-x^2-2x=6\)=> -2x=6 => x=-3
5,3x.(x-5)-3x.(x-3)=6 => \(3x^2-15x-3x^2+9x=6\) => -6x=6 => x=-1
6, 3.(\(x^2-2x+1\))+x.(2-3x)=7 => \(3x^2-6x+3+2x-3x^2=7\)=> -4x=4=> x=-1
Nhiều vậy ai làm hết được :P
1) \(\frac{3x-2}{3}-2=\frac{4x+1}{4}\)
\(\Leftrightarrow\frac{3x-8}{3}=\frac{4x-1}{4}\)
\(\Leftrightarrow4\left(3x-8\right)=3\left(4x-1\right)\)
\(\Leftrightarrow12x-32=12x-3\)(vô lí)
Vậy pt vô nghiệm
P/s: mấy câu sau tương tự thôi mà :)))
nhăm nhe 1 câu thôi
\(10,\frac{3+5x}{5}-3=\frac{9x-3}{4}\)
\(\Leftrightarrow\frac{3+5x-15}{5}=\frac{9x-3}{4}\)
\(\Leftrightarrow\frac{-12+5x}{5}=\frac{9x-3}{4}\)
\(\Leftrightarrow\left(-12+5x\right)5=\left(9x-3\right)4\)
\(\Leftrightarrow-60+25x=36x-12\)
\(\Leftrightarrow26x-36x=-12+60\)
\(\Leftrightarrow-10x=48\)
\(\Leftrightarrow x=-4,8\)
huyển vế:
(x-2)(x-6)(x-3)(x-4)- 72X^2
(x-2)(x-6)
= (x^2 - ... +12)
số giữa:
-6x -2x = -8x
(x-3)(x-4)
= (x^2 ... +12)
số giữa:
-4x -3x = -7x
nhân 2 số giữa với nhau:
(-8x)(-7x) = +56x^2
-72x^2 +56x^2 = -16x^2 = (-16x)(x)
Đáp số:
(x^2 -16x +12)(x^2 +x +12)
1)\(2x+6=0\)
\(\Leftrightarrow2x=-6\)
\(\Leftrightarrow x=-3\)
Vậy : x=3 là nghiệm PT
2)\(\left(x^2-2x+1\right)-4=0\)
\(\Leftrightarrow\left(x-1\right)^2=4\)
\(\Leftrightarrow\hept{\begin{cases}x-1=2\\x-1=-2\end{cases}\Leftrightarrow\hept{\begin{cases}x=3\\x=-1\end{cases}}}\)
Vậy:....
3)\(\frac{x-2}{x+2}+\frac{3}{x-2}=\frac{x^2-11}{x^2-4}\)
\(\Rightarrow\left(x-2\right)^2+3\left(x+2\right)=x^2-11\)
\(\Leftrightarrow x^2-4x+4+3x+6-x^2+11=0\)
\(\Leftrightarrow-x+21=0\)
\(\Leftrightarrow-x=-21\)
\(\Leftrightarrow x=21\)
Vậy:......
4) \(x\left(x^2-1\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x=0\\x^2-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\x^2=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=0\\x=1\end{cases}}}\)
Vậy:........
5)\(4x+20=0\)
\(\Leftrightarrow4x=-20\)
\(\Leftrightarrow x=-5\)
Vậy:...
6)\(\frac{x+3}{x+1}+\frac{x-2}{x}=2\)
\(\Rightarrow x\left(x+3\right)+\left(x+1\right)\left(x-2\right)=2x\left(x+1\right)\)
\(\Leftrightarrow x^2+3x+x^2-2x+x-2-2x^2-2x=0\)
\(\Leftrightarrow-2=0\)(vô lí)
Vậy : PT vô nghiệm
7)\(\frac{1+2x-5}{6}=\frac{3-x}{4}\)
\(\Leftrightarrow\frac{-4+2x}{6}=\frac{3-x}{4}\)
\(\Rightarrow2\left(-4+2x\right)=3\left(3-x\right)\)
\(\Leftrightarrow-8+4x-9+3x=0\)
\(\Leftrightarrow-17+7x=0\)
\(\Leftrightarrow7x=17\)
\(\Leftrightarrow x=\frac{17}{7}\)
8) Làm tương tự
9) \(2\left(x+1\right)=5x-7\)
\(\Leftrightarrow2x+2-5x+7=0\)
\(\Leftrightarrow-3x+9=0\)
\(\Leftrightarrow-3x=-9\)
\(\Leftrightarrow x=3\)
#H
1.\(2x+6=0\)
\(\Leftrightarrow2\left(x+3\right)=0\)
\(\Leftrightarrow x+3=0\)
\(\Leftrightarrow x=3\)
Vậy tập nghiệm của PT là \(S=\left\{3\right\}\)
2.\(\left(x^2-2x+1\right)-4=0\)
\(\Leftrightarrow\left(x-1\right)^2-4=0\)
\(\Leftrightarrow\left(x-1-2\right)\left(x-1+1\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\x+1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=3\\x=-1\end{cases}}\)
Vậy tập nghiệm của PT là \(S=\left\{3;-1\right\}\)
3.\(\frac{x-2}{x+2}+\frac{3}{x-2}=\frac{x^2-11}{x^2-4}\)
ĐKXĐ :\(x\ne\pm2\)
Ta có ; \(\frac{x-2}{x+2}+\frac{3}{x-2}=\frac{x^2-11}{x^2-4}\)
\(\Leftrightarrow\frac{\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}+\frac{3\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}=\frac{x^2-11}{\left(x-2\right)\left(x+2\right)}\)
\(\Leftrightarrow\frac{x^2-4x+4+3x+6}{\left(x-2\right)\left(x+2\right)}=\frac{x^2-11}{\left(x-2\right)\left(x+2\right)}\)
\(\Leftrightarrow\frac{x^2-x+10}{\left(x-2\right)\left(x+2\right)}=\frac{x^2-11}{\left(x-2\right)\left(x+2\right)}\)
\(\Rightarrow x^2-x+10=x^2-11\)
\(\Leftrightarrow21-x=0\)
\(\Leftrightarrow x=21\)(Thỏa mãn ĐKXĐ)
Vậy tập nghiệm của PT là \(S=\left\{21\right\}\)
4.\(x\left(x^2-1\right)=0\)
\(\Leftrightarrow x\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow x=0\)
hoặc \(x-1=0\)
hoặc \(x+1=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm1\end{cases}}\)
Vậy tập nghiệm của PT là \(S=\left\{0;\pm1\right\}\)
5.\(4x+20=0\)
\(\Leftrightarrow4\left(x+5\right)=0\)
\(\Leftrightarrow x+5=0\)
\(\Leftrightarrow x=-5\)
Vậy tập nghiệm của PT là \(S=\left\{-5\right\}\)
6.\(\frac{x+3}{x+1}+\frac{x-2}{x}=2\)
ĐKXĐ : \(x\notin\left\{-1;0\right\}\)
Ta có : \(\frac{x+3}{x+1}+\frac{x-2}{x}=2\)
\(\Leftrightarrow\frac{x\left(x+3\right)}{x\left(x+1\right)}+\frac{\left(x-2\right)\left(x+1\right)}{x\left(x+1\right)}=\frac{2x\left(x+1\right)}{x\left(x+1\right)}\)
\(\Leftrightarrow\frac{x^2+3x+x^2-x-2}{x\left(x+1\right)}=\frac{2x^2+2x}{x\left(x+1\right)}\)
\(\Leftrightarrow\frac{x^2+2x-2}{x\left(x+1\right)}=\frac{2x^2+2x}{x\left(x+1\right)}\)
\(\Rightarrow2x^2+2x-2=2x^2+2x\)
\(\Leftrightarrow0x=2\)(Vô lí)
Vậy PT vô nghiệm
7.\(1+\frac{2x-5}{6}=\frac{3-x}{4}\)
\(\Leftrightarrow\frac{12}{12}+\frac{2\left(2x-5\right)}{12}=\frac{3\left(3-x\right)}{12}\)
\(\Leftrightarrow\frac{12+4x-10}{12}=\frac{9-3x}{12}\)
\(\Leftrightarrow\frac{4x+2}{12}=\frac{9-3x}{12}\)
\(\Rightarrow4x+2=9-3x\)
\(\Leftrightarrow7x=7\)
\(\Leftrightarrow x=1\)
Vậy tập nghiệm của PT là \(S=\left\{1\right\}\)
8.\(\frac{x+2}{x-2}-\frac{1}{x}=\frac{2}{x^2-2x}\)
ĐKXĐ : \(x\notin\left\{0;2\right\}\)
Ta có : \(\frac{x+2}{x-2}-\frac{1}{x}=\frac{2}{x^2-2x}\)
\(\Leftrightarrow\frac{x\left(x+2\right)}{x\left(x-2\right)}-\frac{x-2}{x\left(x-2\right)}=\frac{2}{x\left(x-2\right)}\)
\(\Leftrightarrow\frac{x^2+2x-x+2}{x\left(x-2\right)}=\frac{2}{x\left(x-2\right)}\)
\(\Leftrightarrow\frac{x^2+x+2}{x\left(x-2\right)}=\frac{2}{x\left(x-2\right)}\)
\(\Rightarrow x^2+x+2=2\)
\(\Leftrightarrow x^2+x=0\)
\(\Leftrightarrow x\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)(Không thỏa mãn ĐKXĐ)_(Thỏa mãn ĐKXĐ)
Vậy tập nghiệm của PT là \(S=\left\{-1\right\}\)
9.\(2\left(x+1\right)=5x-7\)
\(\Leftrightarrow2x+2=5x-7\)
\(\Leftrightarrow3x=9\)
\(\Leftrightarrow x=3\)
Vậy tập nghiệm của PT là \(S=\left\{3\right\}\)
a: \(\dfrac{x-1}{x^2-x+1}-\dfrac{x+1}{x^2+x+1}=\dfrac{10}{x\left(x^4+x^2+1\right)}\)
\(\Leftrightarrow x\left(x-1\right)\left(x^2+x+1\right)-x\left(x+1\right)\left(x^2-x+1\right)=10\)
\(\Leftrightarrow x\left(x^3-1\right)-x\left(x^3+1\right)=10\)
=>-2x=10
hay x=-5
d: \(\Leftrightarrow\dfrac{1}{\left(x+1\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+3\right)}+...+\dfrac{1}{\left(x+7\right)\left(x+8\right)}=\dfrac{1}{14}\)
\(\Leftrightarrow\dfrac{1}{x+1}-\dfrac{1}{x+8}=\dfrac{1}{14}\)
\(\Leftrightarrow\left(x+1\right)\left(x+8\right)=14\left(x+8\right)-14\left(x+1\right)\)
\(\Leftrightarrow x^2+9x+8=14x+112-14x-14=98\)
\(\Leftrightarrow x^2+9x-90=0\)
\(\Leftrightarrow x\in\left\{6;-15\right\}\)
Bài 1:
1. \(x-8=3-2\left(x+4\right)\)
\(x-8=3-2x-8\)
\(3x=3\Rightarrow x=1\)
2. \(2\left(x+3\right)-3\left(x-1\right)=2\)
\(2x+6-3x+3=2\)
\(-x+9=2\Rightarrow x=7\)
3. \(4\left(x-5\right)-\left(3x-1\right)=x-19\)
\(4x-20-3x+1=x-19\)
\(0x=0\Rightarrow x=0\)
4. \(7-\left(x-2\right)=5\left(2x-3\right)\)
\(7-x+2=10x-15\)
\(-11x=-24\Rightarrow x=\frac{24}{11}\)
5. \(32-4\left(0,5y-5\right)=3y+2\)
\(32-2y+20=3y+2\)
\(-5y=-50\Rightarrow y=10\)
6. \(3\left(x-1\right)-x=2x-3\)
\(3x-3-x=2x-3\)
\(0x=0\Rightarrow x=0\)
Bài 2:
1. \(\frac{2-x}{3}=\frac{3-2x}{5}\)
\(\frac{\left(2-x\right)5}{15}-\frac{\left(3-2x\right)3}{15}=0\)
\(\frac{10-5x-9+6x}{15}=0\)
\(x+1=0\Rightarrow x=-1\)
2. \(\frac{3-4x}{4}=\frac{x+2}{5}\)
\(\frac{5\left(3-4x\right)}{20}-\frac{4\left(x+2\right)}{20}=0\)
\(\frac{15-20x-4x-8}{20}=0\)
\(7-24x=0\)
\(24x=7\Rightarrow x=\frac{7}{24}\)
1. \(\Leftrightarrow\left(x-6\right)\left(x+7\right)+5\left(x-6\right)\left(3x-1\right)=0\)
\(\Leftrightarrow\left(x-6\right)\left[\left(x+7\right)+5\left(3x-1\right)\right]=0\)
\(\Leftrightarrow\left(x-6\right)\left(16x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-6=0\\16x+2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=6\\x=-\frac{1}{8}\end{matrix}\right.\)
4. \(\Leftrightarrow\left(x+5\right)^2\left(3x+2\right)^2-x^2\left(x+5\right)^2=0\)
\(\Leftrightarrow\left(x+5\right)^2\left[\left(3x+2\right)^2-x^2\right]=0\)
\(\Leftrightarrow\left(x+5\right)^2\left(2x+2\right)\left(4x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(x+5\right)^2=0\\2x+2=0\\4x+2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x+5=0\\2x=-2\\4x=-2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=-1\\x=-\frac{1}{2}\end{matrix}\right.\)
(x2+1)2-6(x2+1)2+5
= (x2+1)2(-6+1)+5
= -5(x2+1)2+5
= -5(x4+2x2+1-1)
= -5(x4+2x2)
= -5x4-10x2
\(\left(x^2+1\right)^2-6\left(x^2+1\right)^2+5\\ \Leftrightarrow\left(x^2+1\right)\left(-6+5\right)\\ \Leftrightarrow\left(x^2+1\right).-1\\ \Leftrightarrow-x^2-1\)