Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x+1\right)\left(x-2\right)< 0\)
\(\Leftrightarrow\hept{\begin{cases}x+1>0\\x-2< 0\end{cases}}\) hoặc \(\hept{\begin{cases}x+1< 0\\x-2>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x>-1\\x< 2\end{cases}}\) hoặc \(\hept{\begin{cases}x< -1\\x>2\end{cases}}\) (loại)
Vậy \(-1< x< 2\)
\(\left(x-2\right)\left(\frac{x+2}{3}\right)>0\)
\(\Leftrightarrow\hept{\begin{cases}x-2>0\\\frac{x+2}{3}>0\end{cases}}\) hoặc \(\hept{\begin{cases}x-2< 0\\\frac{x+2}{3}< 0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x>2\\x>-2\end{cases}}\) hoặc \(\hept{\begin{cases}x< 2\\x< -2\end{cases}}\)
Đến đây bạn tự xét rồi Vậy nha
\(\left(x+1\right)\left(x-2\right)< 0\)
\(\Rightarrow\hept{\begin{cases}x+1< 0\Rightarrow x< -1\\x-2>0\Rightarrow x>2\end{cases}\Rightarrow-1< x< 2\left(KTM\right)}\)
\(\Rightarrow\hept{\begin{cases}x+1>0\\x-2< 0\end{cases}\Rightarrow\hept{\begin{cases}x>-1\\x< 2\end{cases}\Rightarrow}-1< x< 2\Rightarrow x=0;1}\)
(x + 2)(x + 5) < 0
Th1: x + 2 > 0 => x > -2
x + 5 < 0 => x < -5
=> Vô lý
Th2: x + 2 < 0 => x < -2
x + 5 > 0 => x > -5
=> -5 < x < -2
Ta có : (x+2)(x+5)<0
=> x+2 và x+5 là hai số nguyên trái dấu
mà x+5 > x+2
=> \(\hept{\begin{cases}x+5>0\\x+2< 0\end{cases}}\)
=> \(\hept{\begin{cases}x>-5\\x< 2\end{cases}}\)
=> \(-5< x< 2\)
=> \(x\in\left\{-4;-3;-2;-1;0;1\right\}\)
~ học tốt nha ~
a) Điều kiện: \(x\ne-5\)
- Với x<-5 thì: x+3 <0; x+5<0 nên: \(\frac{x+3}{x+5}>0\)Loại.
- Với x>=-3 thì x+3>=0; x+5 >0 nên \(\frac{x+3}{x+5}\ge0\)Loại.
- Với -5<x<-3 thì x+3 <0; x+5>0 nên: \(\frac{x+3}{x+5}< 0\)TM đề bài.
Nghiệm của BPT là -5 <x <-3.
b) Tương tự, nghiệm của BPT là: \(\orbr{\begin{cases}x< -1\\x>3\end{cases}}\)
Mà em mới lớp 7 à nên k biết nghiệm là gì hết á, chị có cách nào khác k ạ???
a,(x+1)(x+2)<0
+)TH1 x+1<0 và x+2>0
=>x<-1 và>-2
=>-2<x<-1
+)TH2 x+1>0 và x+2<0
=>x>-1 và <-2(loại)
b,+)TH1 x+5>0 và x+9<0
=>x>-5 và <-9(loại)
+)TH2 x+5<0 và x+9>0
x<-5 và x>-9
-9<x<-5
\(x^2-x< 0\)
\(\Rightarrow x^2+x-x< 0+x\)
\(\Rightarrow x^2< x\)
\(\Rightarrow\frac{x^2}{x}< \frac{x}{x}\)
=>X <1
Vậy x<1 để thỏa mãn diều kiện
Theo đầu bài ta có:
\(x^2-x< 0\)
\(\Rightarrow x\left(x-1\right)< 0\)
\(\Rightarrow\hept{\begin{cases}x>0\\x-1< 0\end{cases}\Rightarrow\hept{\begin{cases}x>0\\x< 1\end{cases}}}\)
Vậy phương trình vô nghiệm.