Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a \(2x+2>4\\ \Leftrightarrow2\left(x+1\right)>4\\ \Leftrightarrow x+1>2\\ \Leftrightarrow x>1\)
b \(3x+2>-5\\ \Leftrightarrow3x>-7\\ \Leftrightarrow x>\dfrac{-7}{3}\)
c \(10-2x>2\\ \Leftrightarrow2\left(5-x\right)>2\\ \Leftrightarrow5-x>1\\ \Leftrightarrow-x>-4\\ \Leftrightarrow x< 4\)
d \(1-2x< 3\\ \Leftrightarrow-2x< 2\\ \Leftrightarrow2x>2\\ \Leftrightarrow x>1\)
a)2x+2>4
<=> 2x>4-2
<=>2x>2
<=>x>1
Vậy...
b)3x+2>-5
<=>3x>-5-2
<=>3x>-7
<=>x>\(\dfrac{-7}{3}\)
Vậy...
c)10-2x>2
<=>-2x>-10+2
<=>-2x>-8
<=>x<4
Vậy...
d)1-2x<3
<=>-2x<3-1
<=>-2x<2
<=>x>-1
Vậy...
e)10x+3-5\(\le\)14x+12
<=>10x-2\(\le\)14x+12
<=>10x-14x\(\le\)2+12
<=>-4x\(\le\)14
<=>x\(\ge\)\(\dfrac{-7}{2}\)
Vậy...
f)(3x-1)<2x+4
<=> 3x-2x<1+4
<=>x<5
Vậy...
a)5(x-6)=4(3 -2x)
5x-30=12-8x
5x -8x=30+12
-3x=42
x=42 : (-3)
x=-14
a) 2x(x - 3) + 5(x - 3) = 0 ⇔ (x - 3)(2x + 5) = 0 ⇔ x - 3 = 0 hoặc 2x + 5 = 0
1) x - 3 = 0 ⇔ x = 3
2) 2x + 5 = 0 ⇔ 2x = -5 ⇔ x = -2,5
Vậy tập nghiệm của phương trình là S = {3;-2,5}
b) (x2 - 4) + (x - 2)(3 - 2x) = 0 ⇔ (x - 2)(x + 2) + (x - 2)(3 - 2x) = 0
⇔ (x - 2)(x + 2 + 3 - 2x) = 0 ⇔ (x - 2)(-x + 5) = 0 ⇔ x - 2 = 0 hoặc -x + 5 = 0
1) x - 2 = 0 ⇔ x = 2
2) -x + 5 = 0 ⇔ x = 5
Vậy tập nghiệm của phương trình là S = {2;5}
c) x3 – 3x2 + 3x – 1 = 0 ⇔ (x – 1)3 = 0 ⇔ x = 1.
Vậy tập nghiệm của phương trình là x = 1
d) x(2x - 7) - 4x + 14 = 0 ⇔ x(2x - 7) - 2(2x - 7) = 0
⇔ (x - 2)(2x - 7) = 0 ⇔ x - 2 = 0 hoặc 2x - 7 = 0
1) x - 2 = 0 ⇔ x = 2
2) 2x - 7 = 0 ⇔ 2x = 7 ⇔ x = 72
Vậy tập nghiệm của phương trình là S = {2;72}
e) (2x – 5)2 – (x + 2)2 = 0 ⇔ (2x - 5 - x - 2)(2x - 5 + x + 2) = 0
⇔ (x - 7)(3x - 3) = 0 ⇔ x - 7 = 0 hoặc 3x - 3 = 0
1) x - 7 = 0 ⇔ x = 7
2) 3x - 3 = 0 ⇔ 3x = 3 ⇔ x = 1
Vậy tập nghiệm phương trình là: S= { 7; 1}
f) x2 – x – (3x - 3) = 0 ⇔ x2 – x – 3x + 3 = 0
⇔ x(x - 1) - 3(x - 1) = 0 ⇔ (x - 3)(x - 1) = 0
⇔ x = 3 hoặc x = 1
Vậy tập nghiệm của phương trình là S = {1;3}
\(a.\left(3x+2\right)\left(x^2-1\right)=\left(9x^2-4\right)\left(x+1\right)\\ \left(3x+2\right)\left(x^2-1\right)-\left(9x^2-4\right)\left(x+1\right)=0\\ \left(3x+2\right)\left(x+1\right)\left(x-1\right)-\left(3x-2\right)\left(3x+2\right)\left(x+1\right)=0\\ \left(3x+2\right)\left(x+1\right)\left[\left(x-1\right)-\left(3x-2\right)\right]=0\\ \left(3x+2\right)\left(x+1\right)\left(x-1-3x+2\right)=0\\ \left(3x+2\right)\left(x+1\right)\left(1-2x\right)=0\\ \left[{}\begin{matrix}3x+2=0\\x+1=0\\1-2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-2}{3}\\x=-1\\x=\frac{1}{2}\end{matrix}\right.\)
\(b.x\left(x+3\right)\left(x-3\right)-\left(x+2\right)\left(x^2-2x+4\right)=0\\ x\left(x^2-9\right)-\left(x^3+8\right)=0\\ x^3-9x-x^3-8=0\\ -9x-8=0\\ -9x=8\\ x=\frac{-8}{9}\)
\(c.2x\left(x-3\right)+5\left(x-3\right)=0\\ \left(x-3\right)\left(2x+5\right)=0\\ \left[{}\begin{matrix}x-3=0\\2x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\frac{-5}{2}\end{matrix}\right.\)
\(d.\left(3x-1\right)\left(x^2+2\right)=\left(3x-1\right)\left(7x-10\right)\\ \left(3x-1\right)\left(x^2+2\right)-\left(3x-1\right)\left(7x-10\right)=0\\ \left(3x-1\right)\left[\left(x^2+2\right)-\left(7x-10\right)\right]=0\\ \left(3x-1\right)\left(x^2+2-7x+10\right)=0\\ \left(3x-1\right)\left(x^2-7x+12\right)=0\\ \left(3x-1\right)\left(x^2-4x-3x+12\right)=0\\ \left(3x-1\right)\left[\left(x^2-4x\right)+\left(-3x+12\right)\right]=0\\ \left(3x-1\right)\left[x\left(x-4\right)-3\left(x-4\right)\right]=0\\ \left(3x-1\right)\left(x-4\right)\left(x-3\right)=0\\ \left[{}\begin{matrix}3x-1=0\\x-4=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{3}\\x=4\\x=3\end{matrix}\right.\)
\(e.\left(x+2\right)\left(3-4x\right)=x^2+4x+4\\ \left(x+2\right)\left(3-4x\right)=\left(x+2\right)^2\\ \left(x+2\right)\left(3-4x\right)-\left(x+2\right)^2=0\\ \left(x+2\right)\left[\left(3-4x\right)-\left(x+2\right)\right]=0\\ \left(x+2\right)\left(3-4x-x-2\right)=0\\ \left(x+2\right)\left(1-5x\right)=0\left[{}\begin{matrix}x+2=0\\1-5x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\frac{1}{5}\end{matrix}\right.\)
\(f.x\left(2x-7\right)-4x+14=0\\ x\left(2x-7\right)-2\left(2x-7\right)=0\\ \left(2x-7\right)\left(x-2\right)=0\\ \left[{}\begin{matrix}2x-7=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{7}{2}\\x=2\end{matrix}\right.\)
\(g.3x-15=2x\left(x-5\right)\\ 3\left(x-5\right)=2x\left(x-5\right)\\ 3\left(x-5\right)-2x\left(x-5\right)=0\\ \left(x-5\right)\left(3-2x\right)=0\\ \left[{}\begin{matrix}x-5=0\\3-2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=\frac{3}{2}\end{matrix}\right.\)
\(h.\left(2x+1\right)\left(3x-2\right)=\left(5x-8\right)\left(2x+1\right)\\ \left(2x+1\right)\left(3x-2\right)-\left(5x-8\right)\left(2x+1\right)=0\\ \left(2x+1\right)\left[\left(3x-2\right)-\left(5x-8\right)\right]=0\\ \left(2x+1\right)\left(3x-2-5x+8\right)=0\\ \left(2x+1\right)\left(6-2x\right)=0\\ \left[{}\begin{matrix}2x+1=0\\6-2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-1}{2}\\x=3\end{matrix}\right.\)
Copy có khác, ko đọc đc j!!! ʌl
Câu 3:
1)
a) Ta có: 3x−2=2x−33x−2=2x−3
⇔3x−2−2x+3=0⇔3x−2−2x+3=0
⇔x+1=0⇔x+1=0
hay x=-1
Vậy: x=-1
b) Ta có: 3−4y+24+6y=y+27+3y3−4y+24+6y=y+27+3y
⇔27+2y=27+4y⇔27+2y=27+4y
⇔27+2y−27−4y=0⇔27+2y−27−4y=0
⇔−2y=0⇔−2y=0
hay y=0
Vậy: y=0
c) Ta có: 7−2x=22−3x7−2x=22−3x
⇔7−2x−22+3x=0⇔7−2x−22+3x=0
⇔−15+x=0⇔−15+x=0
hay x=15
Vậy: x=15
d) Ta có: 8x−3=5x+128x−3=5x+12
⇔8x−3−5x−12=0⇔8x−3−5x−12=0
⇔3x−15=0⇔3x−15=0
⇔3(x−5)=0⇔3(x−5)=0
Vì 3≠0
nên x-5=0
hay x=5
Vậy: x=5
a) 3x - 2 = 2x - 3
\(\Leftrightarrow\) 3x - 2 - 2x + 3 = 0
\(\Leftrightarrow\) x + 1 = 0
\(\Rightarrow\) x = -1
b) 3 - 4y + 24 + 6y = y + 27 + 3y
\(\Leftrightarrow\) 3 - 4y + 24 + 6y - y - 27 - 3y = 0
\(\Leftrightarrow\) -2y = 0
\(\Rightarrow\) y = 0
c)7 - 2x = 22 - 3x
\(\Leftrightarrow\) 7 - 2x - 22 + 3x = 0
\(\Leftrightarrow\) -15 + x = 0
\(\Rightarrow\) x = 15
d) 8x - 3 = 5x + 12
\(\Leftrightarrow\) 8x - 3 - 5x - 12 = 0
\(\Leftrightarrow\)3x -15 = 0
\(\Leftrightarrow\) 3x = 15
\(\Rightarrow\) x = 5
e) x - 12 + 4x = 25 + 2x - 1
\(\Leftrightarrow\) x - 12 + 4x - 25 - 2x + 1 = 0
\(\Leftrightarrow\) 3x - 36 = 0
\(\Leftrightarrow\) 3x = 36
\(\Rightarrow\) x = 12
f ) x + 2x + 3x - 19 = 3x + 5
\(\Leftrightarrow\) x + 2x + 3x - 19 - 3x - 5 = 0
\(\Leftrightarrow\)3x - 24 = 0
\(\Leftrightarrow\) 3x = 24
\(\Rightarrow\) x = 8
g) 11+ 8x - 3 = 5x - 3 +x
\(\Leftrightarrow\)8x + 8 = 6x - 3
\(\Leftrightarrow\)8x - 6x = -3 - 8
\(\Leftrightarrow\)2x = -11
\(\Rightarrow\)x = \(-\frac{11}{2}\)
h) 4 - 2x +15 = 9x + 4 -2
\(\Leftrightarrow\)19 - 2x = 7x + 4
\(\Leftrightarrow\)-2x - 7x = 4 - 19
\(\Leftrightarrow\)-9x = -15
\(\Rightarrow\)x = \(\frac{15}{9}\) = \(\frac{5}{3}\)
g: Ta có: \(3\left(2x-1\right)\left(3x-1\right)-\left(2x-3\right)\left(9x-1\right)=0\)
\(\Leftrightarrow3\left(6x^2-5x+1\right)-\left(18x^2-29x+3\right)=0\)
\(\Leftrightarrow18x^2-15x+3-18x^2+29x-3=0\)
\(\Leftrightarrow14x=0\)
hay x=0
a) Ta có: \(3x^2\cdot\left(2x^3-x+5\right)\)
\(=6x^5-3x^3+15x^2\)
b) Ta có: \(\left(4xy+3y-5\right)\cdot x^2y\)
\(=4x^3y^2+3x^2y^2-5x^2y\)
c) Ta có: \(\left(3x-2\right)\left(4x+5\right)-6x\left(2x-1\right)\)
\(=12x^2+15x-8x-10-12x^2+6x\)
\(=13x-10\)
d) Ta có: \(\left(3x-5\right)\left(x^2-5x+7\right)\)
\(=3x^3-15x^2+21x-5x^2+25x-35\)
\(=3x^3-20x^2+46x-35\)
dap an 1:4x+6
dap an 2:112x^2-454x-2275/2
số vô tỉ có biễu diễn thập phân vô hạn nhung ko hoàn toàn